;+ ; NAME: ; LEG ; ; PURPOSE: ; This procedure calculates the associated Legendre functions P(l,n) ; at a given point x, up to a maximum order P(nmax,nmax). It is based ; on the varying order recurrence relation given by Abramovitz & Stegun, ; Handbook of Mathematical Functions, 1970 (eq. 8.5.3). The ; Schmidt normalization is used here , in accordance with usual practice ; in geomagnetic studies. The procedure also gives d P(n,m) / d (theta), ; where theta = arccos(x), by taking the derivative of the same ; recurrence relation. Finally, the procedure gives the value of ; P(n,m)/sin(theta). ; ; CATEGORY: ; Mathematical procedures. ; ; CALLING SEQUENCE: ; LEG, x, nmax, p, q, s ; ; INPUTS: ; X: the point at which P(n,m) is to be evaluated. ; ; NMAX: maximum order of P(n,m). ; ; KEYWORDS: ; None. ; ; OUTPUTS: ; P: an array of size (nmax + 1) x (nmax + 1), containing the function values ; (P(n,m) = 0 for n < m). ; Q: an array of size (nmax + 1) x (nmax + 1), containing the values of ; d P(n,m) / d theta. ; S: an array of size (nmax + 1) x (nmax + 1), containing the values of ; P(n,m)/sin(theta). ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; MODIFICATION HISTORY: ; September 6, 1993. Written by A. Louro. ;- pro leg, x, nmax, p, q, s p = fltarr(nmax + 1, nmax + 1) q = fltarr(nmax + 1, nmax + 1) s = fltarr(nmax + 1, nmax + 1) aux = sqrt(1. - x * x) sr2 = sqrt(2.) p(0,0) = sr2 ; Set initial values for p(1,0) = sr2 * x ; recurrence procedure q(0,0) = 0. q(1,0) = - sr2 * aux for n = 1, nmax do begin ; Calculate diagonal values P(n,n) c1 = sqrt(1. - 1. / (2. * n)) p(n,n) = c1 * aux * p(n - 1, n - 1) q(n,n) = c1 * (x * p(n - 1, n - 1) + aux * q(n -1, n - 1)) s(n,n) = c1 * p(n - 1, n - 1) endfor for m = 0, nmax - 1 do begin ; Fill in rest of array mm = max([m, 1]) for n = mm, nmax - 1 do begin c2 = 2. * n + 1. c3 = sqrt((n + m) * (n - m)) c4 = sqrt((n - m + 1) * (n + m + 1)) p(n + 1, m) = (c2 * x * p(n,m) - c3 * p(n - 1, m)) / c4 q(n + 1, m) = (c2 * (x * q(n,m) - aux * p(n,m)) - $ c3 * q(n - 1, m)) / c4 s(n + 1, m) = (c2 * x * s(n,m) - c3 * s(n - 1, m)) / c4 endfor endfor for n = 0, nmax do begin ; "Correct" (n,0) terms by p(n, 0) = p(n, 0) / sr2 ; dividing by sqrt(2) q(n, 0) = q(n, 0) / sr2 endfor return end ;+ ; NAME: ; IGRF ; PURPOSE: ; Computation of magnetic field vectors according to the ; series of International Geomagnetic Reference Fields (1945 ; - 1990). ; CATEGORY: ; Magnetic field modelling. ; CALLING SEQUENCE: ; IGRF, LAT, LON, HEIGHT, YEAR, X, Y, Z, HOR, DIP, DEC ; INPUTS: ; LAT: The geographic latitude (degrees) of the point for ; which the magnetic field vector is to be computed. ; LON: The geographic longitude of the point. ; HEIGHT: The altitude (km) of the point above mean sea level. ; YEAR: The year of observations (either 2 or 4 digits). ; OPTIONAL INPUTS: ; None. ; KEYWORD PARAMETERS: ; None. ; OUTPUTS: ; X: The geographic northward component of the magnetic ; field vector (gauss; 1 gauss = 1E-4 T). ; Y: The geographic eastward component of the vector. ; Z: The geographic downward component of the vector. ; HOR: The geographic horizontal component of the vector. ; DIP: The angle of the field vector below the horizontal ; (degrees). ; DEC: The direction of the horizontal component (degrees ; east of north). ; OPTIONAL OUTPUTS: ; None. ; COMMON BLOCKS: ; None. ; SIDE EFFECTS: ; Files containing the spherical harmonic coefficients of ; the field expansion are read. ; RESTRICTIONS: ; Only scalar arguments are permitted. The YEAR must be in ; the range 1945 - 1995 (for now). ; PROCEDURE: ; See Akasofu & Chapman, Solar Terrestrial Physics, pp. 68ff. ; EXAMPLE: ; ; SEE ALSO: ; ; MODIFICATION HISTORY: ; Written by: Dr. Alfredo Louro, ISR, 1991-1995. ;- pro igrf,lat,lon,height,year,x,y,z,hor,dip,dec IF N_PARAMS() LT 7 THEN BEGIN doc_library,'igrf' RETURN ENDIF nlat=N_ELEMENTS(lat) nlon=N_ELEMENTS(lon) nht=N_ELEMENTS(height) nyr=N_ELEMENTS(year) IF nlat>nlon>nht>nyr GT 1 THEN BEGIN MESSAGE,'Only scalar arguments permitted',/INFORMATIONAL RETURN ENDIF lat=lat(0) lon=lon(0) height=height(0) year=year(0) r0 = 6371.2 ra = 6378.16 rb= 6356.775 ; Ensure the year is in the correct format (last two digits only). yr=year MOD 100 ; convert lat, lan from degrees to radians. conv=!pi/180. ;lat_s=90.-lat lat_s=lat*conv lon_s=lon*conv ; convert (oblate-spheroidal) geographic coordinates to spherical. ra2=ra*ra ra4=ra2*ra2 rb2=rb*rb rb4=rb2*rb2 sin2lat=sin(lat_s)*sin(lat_s) aux2=ra2-(ra2-rb2)*sin2lat aux4=ra4-(ra4-rb4)*sin2lat r=sqrt(height*height+2.*height*sqrt(aux2)+aux4/aux2) f=(height*sqrt(aux2)+ra2)^2/(height*sqrt(aux2)+rb2)^2 tlat=acos(sin(lat_s)/sqrt(f+sin2lat*(1.-f))) ; read spherical harmonic coefficients g=fltarr(11,11) h=fltarr(11,11) yearlo=floor(yr/5.)*5 yearhi=yearlo+5 if yr ge 90 then begin gdot=fltarr(11,11) hdot=fltarr(11,11) openr,1,'~alfredo/idlpro/igrf90.dat' openr,2,'~alfredo/idlpro/igrf90s.dat' while not eof(1) do begin readf,1,n,m,g_aux,h_aux g(n,m)=g_aux h(n,m)=h_aux endwhile while not eof(2) do begin readf,2,n,m,gdot_aux,hdot_aux gdot(n,m)=gdot_aux hdot(n,m)=hdot_aux endwhile close,1 close,2 g=g+(yr-90)*gdot h=h+(yr-90)*hdot endif else begin glo=fltarr(11,11) ghi=fltarr(11,11) hlo=fltarr(11,11) hhi=fltarr(11,11) filelo='~alfredo/idlpro/dgrf'+strcompress(yearlo,/remove_all)+'.dat' if yearhi eq 90 then filehi='~alfredo/idlpro/igrf90.dat' else $ filehi='~alfredo/idlpro/dgrf'+strcompress(yearhi,/remove_all)+'.dat' openr,1,filelo openr,2,filehi while not eof(1) do begin readf,1,n,m,glo_aux,hlo_aux glo(n,m)=glo_aux hlo(n,m)=hlo_aux endwhile while not eof(2) do begin readf,2,n,m,ghi_aux,hhi_aux ghi(n,m)=ghi_aux hhi(n,m)=hhi_aux endwhile close,1 close,2 g=(yr*(ghi-glo)+(yearhi*glo-yearlo*ghi))/5. h=(yr*(hhi-hlo)+(yearhi*hlo-yearlo*hhi))/5. endelse ; create phi-dependent factor of Tn and T'n phix=fltarr(11,11) phiy=fltarr(11,11) phiz=fltarr(11,11) for n=1,10 do begin fact=(r0/r)^(n+2) for m=0,n do begin phix(n,m)=fact*g(n,m)*cos(m*lon_s)+h(n,m)*sin(m*lon_s) phiy(n,m)=fact*m*(g(n,m)*sin(m*lon_s)-h(n,m)*cos(m*lon_s)) phiz(n,m)=-phix(n,m)*(n+1) endfor endfor ; calculate the associated Legendre functions P(n,m) leg,cos(tlat),10,p,der_p,p_sin ; calculate Z and H components of geomagnetic field x=0. y=0. z=0. for n=1,10 do begin for m=0,n do begin z=z+phiz(n,m)*p(n,m) x=x+phix(n,m)*der_p(n,m) y=y+phiy(n,m)*p_sin(n,m) endfor endfor delta=tlat+lat_s-!pi/2. xc=x zc=z x=xc*cos(delta)+zc*sin(delta) z=-xc*sin(delta)+zc*cos(delta) z=z(0)*1.e-5 x=x(0)*1.e-5 y=y(0)*1.e-5 ; calculate dip angle, and declination ; and convert back from radians to degrees hor=sqrt(x^2+y^2) dip=atan(z,hor)/conv dec=atan(y,x)/conv finish: return end