; $Id: regress1.pro,v 1.1 1993/04/02 18:54:39 idl Exp $ ; Copyright (c) 1993, Research Systems Inc. All rights ; reserved. Unauthorized reproduction prohibited. FUNCTION REGRESS1,X,Y,W,YFIT,A0,SIGMA,FTEST,R,RMUL,CHISQ ;+ ; NAME: ; REGRESS1 ; ; PURPOSE: ; Multiple linear regression fit. ; Fit the function: ; Y(i) = A0 + A(0)*X(0,i) + A(1)*X(1,i) + ... + ; A(Nterms-1)*X(Nterms-1,i) ; ; CATEGORY: ; G2 - Correlation and regression analysis. ; ; CALLING SEQUENCE: ; Result = REGRESS(X, Y, W, YFIT, A0, SIGMA, FTEST, R, RMUL, CHISQ) ; ; INPUTS: ; X: array of independent variable data. X must ; be dimensioned (Nterms, Npoints) where there are Nterms ; coefficients to be found (independent variables) and ; Npoints of samples. ; ; Y: vector of dependent variable points, must have Npoints ; elements. ; ; W: vector of weights for each equation, must be a Npoints ; elements vector. For instrumental weighting ; w(i) = 1/standard_deviation(Y(i)), for statistical ; weighting w(i) = 1./Y(i). For no weighting set w(i)=1, ; and also set the RELATIVE_WEIGHT keyword. ; ; OUTPUTS: ; Function result = coefficients = vector of ; Nterms elements. Returned as a column vector. ; ; OPTIONAL OUTPUT PARAMETERS: ; Yfit: array of calculated values of Y, Npoints elements. ; ; A0: Constant term. ; ; Sigma: Vector of standard deviations for coefficients. ; ; Ftest: value of F for test of fit. ; ; Rmul: multiple linear correlation coefficient. ; ; R: Vector of linear correlation coefficient. ; ; Chisq: Reduced weighted chi squared. ; ; KEYWORDS: ;RELATIVE_WEIGHT: if this keyword is non-zero, the input weights ; (W vector) are assumed to be relative values, and not based ; on known uncertainties in the Y vector. This is the case for ; no weighting W(*) = 1. ; ; PROCEDURE: ; Adapted from the program REGRES, Page 172, Bevington, Data Reduction ; and Error Analysis for the Physical Sciences, 1969. ; ; MODIFICATION HISTORY: ; Written, DMS, RSI, September, 1982. ; Added RELATIVE_WEIGHT keyword, W. Landsman, August 1991 ;- ; On_error,2 ;Return to caller if an error occurs SY = SIZE(Y) ;Get dimensions of x and y. SX = SIZE(X) IF (N_ELEMENTS(W) NE SY(1)) OR (SX(0) NE 2) OR (SY(1) NE SX(2)) THEN $ message, 'Incompatible arrays.' ; NTERM = SX(1) ;# OF TERMS NPTS = SY(1) ;# OF OBSERVATIONS ; SW = TOTAL(W) ;SUM OF WEIGHTS YMEAN = TOTAL(Y*W)/SW ;Y MEAN XMEAN = (X * (REPLICATE(1.,NTERM) # W)) # REPLICATE(1./SW,NPTS) WMEAN = SW/NPTS WW = W/WMEAN ; NFREE = NPTS-1 ;DEGS OF FREEDOM SIGMAY = SQRT(TOTAL(WW * (Y-YMEAN)^2)/NFREE) ;W*(Y(I)-YMEAN) XX = X- XMEAN # REPLICATE(1.,NPTS) ;X(J,I) - XMEAN(I) WX = REPLICATE(1.,NTERM) # WW * XX ;W(I)*(X(J,I)-XMEAN(I)) SIGMAX = SQRT( XX*WX # REPLICATE(1./NFREE,NPTS)) ;W(I)*(X(J,I)-XM)*(X(K,I)-XM) R = WX #(Y - YMEAN) / (SIGMAX * SIGMAY * NFREE) WW1 = WX # TRANSPOSE(XX) d = determ(WW1) if d eq 0 THEN return, 1.e+30 if d lt 1.e-13 THEN BEGIN print,"regression-- Determinant of correlation matrix less than 1.e-13." print," Hit control C to terminate." ENDIF ARRAY = INVERT((WX # TRANSPOSE(XX))/(NFREE * SIGMAX #SIGMAX)) A = (R # ARRAY)*(SIGMAY/SIGMAX) ;GET COEFFICIENTS YFIT = A # X ;COMPUTE FIT A0 = YMEAN - TOTAL(A*XMEAN) ;CONSTANT TERM YFIT = YFIT + A0 ;ADD IT IN FREEN = NPTS-NTERM-1 > 1 ;DEGS OF FREEDOM, AT LEAST 1. CHISQ = TOTAL(WW*(Y-YFIT)^2)*WMEAN/FREEN ;WEIGHTED CHI SQUARED IF KEYWORD_SET(relative_weight) then varnce = chisq $ else varnce = 1./wmean sigma = sqrt(array(indgen(nterm)*(nterm+1))*varnce/(nfree*sigmax^2)) ;Error term RMUL = TOTAL(A*R*SIGMAX/SIGMAY) ;MULTIPLE LIN REG COEFF IF RMUL LT 1. THEN FTEST = RMUL/NTERM / ((1.-RMUL)/FREEN) ELSE FTEST=1.E6 RMUL = SQRT(RMUL) RETURN,A END