; $Id: regression.pro,v 1.1 1993/04/02 18:54:39 idl Exp $ ; Copyright (c) 1991-1993, Research Systems Inc. All rights ; reserved. Unauthorized reproduction prohibited. pro printoutr,TName,BName,SST,SSE,R,C,unit if N_Elements( TName) EQ 0 THEN TName='Regression' if N_Elements( BName) EQ 0 THEN BName='Residual' printf,unit, " " printf,unit, " " printf,unit,' ANALYSIS OF VARIANCE printf,unit," " printf,unit,' SOURCE SUM OF SQUARES DF MEAN SQUARE F p' printf,unit,'*******************************************************************************' MSSE = SSE/(R-C-1) DFE = R-C-1 MT = SST/(C) if MSSE NE 0 THEN FT = MT/MSSE else FT = 1.0e30 printf,unit, $ Format='(A10,7X,G15.7,3X,I5,3X,G15.7,1X,G11.5,3X,F6.4)', $ TName,SST,C,MT,FT, 1-F_Test1(FT,C,DFE) printf,unit,Format='(A10,7X,G15.4,3X,I5,3X,G15.4)', $ BName,SSe,DFe,MSSe RETURN END pro regression, X1, Y1, W1, A0, COEFF, Resid, YFit, sigma, $ FTest, R, RMul, ChiSqr, VarNames = VarName,$ ListName = LN,NoPrint=NP, Missing =M, $ Unit = unit ;+ ; NAME: ; REGRESSION ; ; PURPOSE: ; To augment and display the output of the library function Regress. ; Additional output includes an anova table to test the hypothesis ; that all coefficients are zero.A regression table is printed to the ; screen or user specified file displaying the Coefficients, their ; standard deviations, and the T statistic to test for each coefficient ; the hypothesis that it is zero. ; ; CATEGORY: ; Statistics. ; ; CALLING SEQUENCE: ; REGRESSION, X, Y, W,A0, COEFF, Resid, YFit, sigma, FTest, R, RMul, ChiSqr ; ; INPUTS: ; X: Array of independent variable data. X must be dimensioned ; (NTerms, NPoints) where there are Nterms coefficients to be ; found and NPoints of sample data. Y = column vector of NPoints ; dependent variable values. ; ; OPTIONAL INPUTS: ; W: vector of weights for each equation. For instrumental ; weighing, set w(i) = 1/Variance(Y(i)), for statistical ; weighting, w(i) = 1./Y(i) ; ; KEYWORDS: ; VARNAMES: A vector of names for the independent variables to be used ; in the output. ; ; NOPRINT: A flag to suppress printing out regression statistics. ; The default is to print. ; ; LIST_NAME: Name of output file. Default is to the screen. ; ; MISSING: Missing data value. If undefined, assume no missing data. ; Listwise handling of missing data. ; ; OUTPUTS: ; Anova table and regression summary written to the screen or to user ; specified file. ; ; OPTIONAL OUTPUT PARAMETERS: ; A0: Constant term. ; ; Coeff: Vector of coefficients. Coeff has NTerm elements. ; ; Resid: Vector of residuals - i.e. Y - YFit. ; ; Yfit: Array of calculated values of Y, Npoints ; ; Sigma: Vector of standard deviations for coefficients. ; ; Ftest: Value of F for test of fit. ; ; Rmul: Multiple linear correlation coefficient. ; ; R: Vector of linear correlation coefficient. ; ; ChiSqr: Reduced weighted chi square for fit. ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; PROCEDURE: ; See documentation for REGRESS in the User's Library. ;- ; On_Error,2 X = X1 Y = Y1 SY = size(Y) if N_Elements(unit) EQ 0 THEN $ if N_Elements(LN) THEN openw,unit,/get,ln else unit = -1 X = float(X) if (SY(0) lt 2) THEN BEGIN B = Y ENDIF ELSE B = transpose(Y) SA = size(X) SY = Size(B) IF ((SA(0) eq 2) AND (SY(1) NE SA(2))) OR $ ((SA(0) eq 1) and (Sy(1) NE SA(1))) THEN BEGIN printf,unit, 'regression - Incompatible arrays.' goto,done ENDIF if N_Elements(M) THEN BEGIN if SA(0) eq 1 THEN BEGIN here = where(X ne M, count) if count ne 0 THEN BEGIN X = X(here) Y = Y(here) ENDIF here = where(Y ne M, count) if count ne 0 THEN BEGIN X= X(here) Y = Y(here) ENDIF ENDIF ELSE BEGIN X = listwise([x,Y],M,rownum,rows,here) ; removes ;cases with missing data X = X(0:SA(1)-1,*) B = B(here) ENDELSE SA = size(X) SY = Size(B) ENDIF if sa(0) eq 2 THEN siza = SA(2) else siza= SA(1) if (siza LT 2) THEN BEGIN printf,unit,"regression- need more than 1 observation goto, DONE ENDIF if SA(0) EQ 1 THEN BEGIN if N_elements(W1) ne 0 THEN W = W1 coeff=SimpRegress(X,B,W,YFit,A0,sigma,FTest,R,RMul, $ Chisqr) ENDIF ELSE BEGIN if N_Elements(W1) EQ 0 THEN W=fltarr(siza)+1 else W = w1 coeff = Regress1(X,B,W,Yfit,A0,sigma,FTest,R,RMul,Chisqr ) if N_ELEMENTS(coeff) eq 1 then $ if coeff eq 1.e+30 THEN BEGIN printf, unit, "Regression---Halting, correlation matrix is singular" goto,done ENDIF sigma = sigma * sqrt(Chisqr) ENDELSE if N_Elements(NP) EQ 0 THEN BEGIN printf,unit,'Regression: Correlation Coeff =',RMul if SA(0) eq 1 THEN VARNUM = 1 else VarNum = SA(1) if SA(0) eq 1 then points = SA(1) else points = SA(2) NC=Size(VarName) if (NC(1) NE 0 ) THEN BEGIN ; set dependent ; variable names if (NC(1) LT VarNum) THEN BEGIN printf,unit,'regression-missing Variable names' I=Indgen(varNum) VarName=[VarName,'Var'+STRTRIM(I(NC(1):VarNum-1),2)] ENDIF ENDIF ELSE VarName='Var'+ STRTrim(INDgen(VarNum),2) printf,unit," " printf,unit," VARIABLE COEFFICIENT STDDEV T P " printf,unit,format='(A10,3X,G15.7)','Constant',A0 For i =0L,VarNum-1 DO $ printf,unit,format= $ '(A10,3X,G15.7,3x,G15.7,4x,G15.7,3x,F6.4 )', $ VarName(i), coeff(i), sigma(i), $ coeff(i)/sigma(i), $ 2.0*(1-student1_t(abs(coeff(i)/sigma(i)), $ points-VarNum-1)) Resid = B - YFit if SA(1) NE 1 THEN ChiSqr = Total(Resid^2 * W) Mean = Total(B)/points SST = Total(W*(B - Mean)^2) - ChiSqr printoutr,TName,BName,SSt,ChiSqr,Points,VarNum,unit ChiSqr = ChiSqr/(Points - VarNum -1) FTEST = SST/VarNum/ChiSqr ENDIF DONE: if (N_Elements(LN) NE 0) THEN Free_LUN,unit return end