; $Id: derivsig.pro,v 1.1 1993/07/27 15:55:59 dave Exp $ Function Derivsig, X, Y, sigx, sigy ;+ ; NAME: ; DERIVSIG ; PURPOSE: ; Derivsig - computes the standard deviation of the result ; of the function DERIV (See DERIV writeup.) using the ; input variables of DERIV and the standard deviations ; of those input variables. ; CATEGORY: ; Numerical analysis. ; CALLING SEQUENCE: ; sigDy = Derivsig(sigy) ;sigma(Dy(i)/di), point spacing = 1. ; sigDy = Derivsig(X,Y,sigx,sigy) ;sigma(Dy/Dx), "nonunit" point spacing. ; ; INPUTS: ; Y = Variable to be differentiated. Omit if X is omitted. ; X = Variable to differentiate with respect to. If omitted, ; unit spacing is assumed for Y, i.e. X(i) = i. ; sigy = standard deviation of y (vector if used alone in call, ; vector or constant if used with other parameters) ; sigx = standard deviation of x (vector or constant). Use "0.0" if ; the abscissa is exact; omit if X is omitted. ; OPTIONAL INPUT PARAMETERS: ; As above. ; OUTPUTS: ; Function result = standard deviation of the derivative. ; COMMON BLOCKS: ; None. ; SIDE EFFECTS: ; None. ; RESTRICTIONS: ; None. ; PROCEDURE: ; See Bevington, "Data Analysis and Reduction for the Physical ; Sciences," McGraw-Hill (1969), Chap 4. ; MODIFICATION HISTORY: ; Written by Richard Bonomo at the University of Wisconsin - Madison ; department of Electrical and Computer Engineering, July, 1991. ; "DERIV" written by DMS, Aug, 1984. ;- ; on_error,2 ;Return to caller if an error occurs prms=n_params(0) n = n_elements(x) if (n lt 3) and (prms gt 1) then message, 'X must have at least 3 points' if (n lt 3) and (prms eq 1) then message, $ 'sigy must be a vector of at least 3 points if used alone' if ((prms ne 1) and (prms ne 4)) then message,$ 'function DERIVSIG must be called with either 1 or 4 parameters' if prms eq 1 then begin ; unit spacing assumed sigy=x if n_elements(sigy) eq 1 then sigy=fltarr(n) + sigy sigd=sqrt(0.25*(shift(sigy,-1)*shift(sigy,-1) + $ shift(sigy,1)*shift(sigy,1))) sigd(0)=sqrt(0.25*(sigy(0)^2*9.0 + sigy(1)^2*16.0 + sigy(2)^2)) sigd(n-1)=sqrt(0.25*(sigy(n-1)^2*9.0 + sigy(n-2)*16.0 + sigy(n-3))) endif if prms eq 4 then begin if n ne n_elements(y) then message,'Vectors must have same size' if n_elements(sigy) eq 1 then sigy=fltarr(n) + sigy nix=n_elements(sigx) if (nix eq 1) and (sigx(0) ne 0.0) then sigx=fltarr(n) + sigx nix=n_elements(sigx) if (nix ne n) and (nix ne 1) then message,$ 'sigx vector must have the same length as X, or be a scalar' dsq=shift(x,-1)-shift(x,1) dsq=dsq*dsq dy=shift(y,-1)-shift(y,1) sigd=(shift(sigy,-1)*shift(sigy,-1) + shift(sigy,1)*shift(sigy,1))/dsq if (nix ne 1) then sigd=sigd + (shift(sigx,-1)^2*dy^2 + $ shift(sigx,1)^2*dy^2)/(dsq*dsq) sigd=sqrt(sigd) dsq=x(2)-x(0) dsq=dsq*dsq ; sigd(0)=(sigy(0)^2*9.0 + sigy(1)^2*16.0 + sigy(2)^2)/dsq if (nix ne 1) then sigd(0) = sigd(0) + (sigx(2)^2*(3.0*y(0) - $ 4.0*y(1) + y(2))^2 + sigx(0)^2*(-3.0*y(0) + 4.0*y(1) - y(2))^2)/$ (dsq*dsq) sigd(0)=sqrt(sigd(0)) ; dsq=x(n-1)-x(n-3) dsq=dsq*dsq sigd(n-1)=(sigy(n-1)^2*9.0 + sigy(n-2)^2*16.0 + sigy(n-3)^2)/dsq if (nix ne 1) then sigd(n-1) = sigd(n-1) + (sigx(n-1)^2*(-3.0*y(n-1)$ + 4.0*y(n-2) - y(n-3))^2 + sigx(n-3)^2*(3.0*y(n-1) - 4.0*y(n-2)$ + y(n-3))^2)/(dsq*dsq) sigd(n-1)=sqrt(sigd(n-1)) endif return, sigd end