; $Id: gaussfit.pro,v 1.4 1996/07/12 14:36:17 dave Exp $ PRO GAUSS_FUNCT,X,A,F,PDER ; NAME: ; GAUSS_FUNCT ; ; PURPOSE: ; EVALUATE THE SUM OF A GAUSSIAN AND A 2ND ORDER POLYNOMIAL ; AND OPTIONALLY RETURN THE VALUE OF IT'S PARTIAL DERIVATIVES. ; NORMALLY, THIS FUNCTION IS USED BY CURVEFIT TO FIT THE ; SUM OF A LINE AND A VARYING BACKGROUND TO ACTUAL DATA. ; ; CATEGORY: ; E2 - CURVE AND SURFACE FITTING. ; CALLING SEQUENCE: ; FUNCT,X,A,F,PDER ; INPUTS: ; X = VALUES OF INDEPENDENT VARIABLE. ; A = PARAMETERS OF EQUATION DESCRIBED BELOW. ; OUTPUTS: ; F = VALUE OF FUNCTION AT EACH X(I). ; ; OPTIONAL OUTPUT PARAMETERS: ; PDER = (N_ELEMENTS(X),6) ARRAY CONTAINING THE ; PARTIAL DERIVATIVES. P(I,J) = DERIVATIVE ; AT ITH POINT W/RESPECT TO JTH PARAMETER. ; COMMON BLOCKS: ; NONE. ; SIDE EFFECTS: ; NONE. ; RESTRICTIONS: ; NONE. ; PROCEDURE: ; F = A(0)*EXP(-Z^2/2) + A(3) + A(4)*X + A(5)*X^2 ; Z = (X-A(1))/A(2) ; Elements beyond A(2) are optional. ; MODIFICATION HISTORY: ; WRITTEN, DMS, RSI, SEPT, 1982. ; Modified, DMS, Oct 1990. Avoids divide by 0 if A(2) is 0. ; Added to Gauss_fit, when the variable function name to ; Curve_fit was implemented. DMS, Nov, 1990. ; n = n_elements(a) ON_ERROR,2 ;Return to caller if an error occurs if a(2) ne 0.0 then begin Z = (X-A(1))/A(2) ;GET Z EZ = EXP(-Z^2/2.) ;GAUSSIAN PART endif else begin z = 100. ez = 0.0 endelse case n of 3: F = A(0)*EZ 4: F = A(0)*EZ + A(3) 5: F = A(0)*EZ + A(3) + A(4)*X 6: F = A(0)*EZ + A(3) + A(4)*X + A(5)*X^2 ;FUNCTIONS. ENDCASE IF N_PARAMS(0) LE 3 THEN RETURN ;NEED PARTIAL? ; PDER = FLTARR(N_ELEMENTS(X),n) ;YES, MAKE ARRAY. PDER(0,0) = EZ ;COMPUTE PARTIALS if a(2) ne 0. then PDER(0,1) = A(0) * EZ * Z/A(2) PDER(0,2) = PDER(*,1) * Z if n gt 3 then PDER(*,3) = 1. if n gt 4 then PDER(0,4) = X if n gt 5 then PDER(0,5) = X^2 RETURN END Function Gaussfit, x, y, a, NTERMS=nt, ESTIMATES = est ;+ ; NAME: ; GAUSSFIT ; ; PURPOSE: ; Fit the equation y=f(x) where: ; ; F(x) = A0*EXP(-z^2/2) + A3 + A4*x + A5*x^2 ; and ; z=(x-A1)/A2 ; ; A0 = height of exp, A1 = center of exp, A2 = sigma (the width). ; A3 = constant term, A4 = linear term, A5 = quadratic term. ; Terms A3, A4, and A5 are optional. ; The parameters A0, A1, A2, A3 are estimated and then CURVEFIT is ; called. ; ; CATEGORY: ; ?? - fitting ; ; CALLING SEQUENCE: ; Result = GAUSSFIT(X, Y [, A]) ; ; INPUTS: ; X: The independent variable. X must be a vector. ; Y: The dependent variable. Y must have the same number of points ; as X. ; KEYWORD INPUTS: ; KEYWORD INPUTS: ; ESTIMATES = optional starting estimates for the parameters of the ; equation. Should contain NTERMS (6 if NTERMS is not ; provided) elements. ; NTERMS = Set NTERMS to 3 to compute the fit: F(x) = A0*EXP(-z^2/2). ; Set it to 4 to fit: F(x) = A0*EXP(-z^2/2) + A3 ; Set it to 5 to fit: F(x) = A0*EXP(-z^2/2) + A3 + A4*x ; ; OUTPUTS: ; The fitted function is returned. ; ; OPTIONAL OUTPUT PARAMETERS: ; A: The coefficients of the fit. A is a three to six ; element vector as described under PURPOSE. ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; The peak or minimum of the Gaussian must be the largest ; or smallest point in the Y vector. ; ; PROCEDURE: ; The initial estimates are either calculated by the below procedure ; or passed in by the caller. Then the function CURVEFIT is called ; to find the least-square fit of the gaussian to the data. ; ; Initial estimate calculation: ; If the (MAX-AVG) of Y is larger than (AVG-MIN) then it is assumed ; that the line is an emission line, otherwise it is assumed there ; is an absorbtion line. The estimated center is the MAX or MIN ; element. The height is (MAX-AVG) or (AVG-MIN) respectively. ; The width is found by searching out from the extrema until ; a point is found less than the 1/e value. ; ; MODIFICATION HISTORY: ; DMS, RSI, Dec, 1983. ; DMS, RSI, Jun, 1995, Added NTERMS keyword. Result is now float if ; Y is not double. ; DMS, RSI, Added ESTIMATES keyword. ;- ; on_error,2 ;Return to caller if an error occurs csave = !c if n_elements(nt) eq 0 then nt = 6 if nt lt 3 or nt gt 6 then $ message,'NTERMS must have values from 3 to 6.' n = n_elements(y) ;# of points. s = size(y) if n_elements(est) eq 0 then begin ;Compute estimates? c = poly_fit(x,y,1,yf) ;Fit a straight line yd = y - yf if s(s(0)+1) ne 5 then begin ;If Y is not double, use float yd = float(yd) & c = float(c) & endif ymax=max(yd) & xmax=x(!c) & imax=!c ;x,y and subscript of extrema ymin=min(yd) & xmin=x(!c) & imin=!c if abs(ymax) gt abs(ymin) then i0=imax else i0=imin ;emiss or absorp? i0 = i0 > 1 < (n-2) ;never take edges dy=yd(i0) ;diff between extreme and mean del = dy/exp(1.) ;1/e value i=0 while ((i0+i+1) lt n) and $ ;guess at 1/2 width. ((i0-i) gt 0) and $ (abs(yd(i0+i)) gt abs(del)) and $ (abs(yd(i0-i)) gt abs(del)) do i=i+1 a = [yd(i0), x(i0), abs(x(i0)-x(i0+i))] if nt gt 3 then a = [a, c(0)] ;estimates if nt gt 4 then a = [a, c(1)] if nt gt 5 then a = [a, 0.] endif else begin if nt ne n_elements(est) then message, 'ESTIMATES must have NTERM elements' a = est endelse !c=csave ;reset cursor for plotting return,curvefit(x,y,replicate(1.,n),a,sigmaa, $ function_name = "GAUSS_FUNCT") ;call curvefit end