UCalgary Space Remote Sensing Open Data Platform
Source Code for the S transform of a real function
Source Code for the S Transform of a Real Function
; The S transform function called "local( )"
; Returns the complex localization matrix for positive frequencies
; The users passes the time series, and the width factor of the localizing window
; ie the window = k periods (k=1 suggested)
; result = local(timeseries,k)
- FUNCTION local, time_series , factor
- width=1.0 ; declares a floating point variable
- temp = size(time_series)
- length = temp(1) ; finds the length of the time series array
- b = complexarr(length) ; allocates a complex array with 'length' elements
- gw = complexarr(length) ; allocates a complex array with 'length' elements
- spe_length = length/2
- loc = complexarr(length,spe_length+1) ; allocates a complex two dimensional array
; with 'length' by 'spe_length+1' elements
- h = fft(time_series,-1) ; multi-radix fft routine defined below
- loc(*,0) = 0 ; zero frequency is set to zero (subtract average)
- for f = 1.0, spe_length do begin
- width = factor * length/f ; width of window in the time domain
- gw = g_window(length,width) ; user defined function described below
- h = shift(h,-1) ; shifts elements in an array
- b = h * gw ; multiplies the spectrum by the 'voice gaussian'
- loc(*,f) = fft(b,1) ; a voice of the localization matrix (complex)
- endfor
- return,loc
- end
; Gaussian Window Function called by local()
; Accepts variables length and width
; Returns the spectrum of the Gaussian window
- FUNCTION g_window, len, w
- if w ne 0.0 then sigma = len/(2*!PI*w) $ ;sigma = standard deviation of voice gaussian
- else print,'w is zero!'
- g = fltarr(len) ; allocate memory for voice gaussian
- compg = complex(len) ;allocates a complex array of length 'len'
- for i = 0.0,(len-1) do begin
- exponent = (i-(len/2))^2/(2*sigma^2) ; calculate exponent of gaussian
- if exponent lt 25 then g(i)=exp(-exponent) $ ; if exponent large then e^(-exp)=0
- else g(i)=0.0 ; { usually not necessary }
- endfor
- g = shift(g,-len/2) ; positive half first, then negative half
- return,complex(g,0) ; returns the complex-valued voice gaussian
- end
; Inverse of the local() function
; Returns the original time series (as a complex array)
; Accepts the positive frequency half of the complex S transform result
; ie this accepts the output of the local() function
; Usage: inverse_result = ilocal(s-matrix)
; for example, in the following, inverse_result will be the original time series
; IDL> result = local(timeseries,1)
; IDL> inverse_result = ilocal(result)
; then REAL[inverse_result] == timeseries
- FUNCTION ilocal, loc
- tempsize = size(loc) ; get size of the complex array 'loc'
- rlength = tempsize(1) ; length of row
- clength = tempsize(2) ; length of column
- lsum = complexarr(clength)
- for i = 0,clength-1 do lsum(i) = total( (temp=loc(*,i)) ) ; averages the voices to give the
;Fourier spectrum (+ freq only!)
- tempsize=0 & temp=0
- lspe = complexarr(rlength)
- for i = 0,clength-1 do lspe(i) = lsum(i)
- for i = clength,rlength-1 do
- lspe(i) =complex(float(lsum(2*clength-i-2)),-imaginary(lsum(2*clength-i-2)) )
- ; mirrors the negative frequencies (real even,imag odd)
- ; thus the array 'lspe' is the fourier transform of ;the array "timeseries"
- return, fft(lspe/rlength,1) ;inverse fft to return the time series (complex valued)
- ; note, the imaginary part of the time series will be ;identically equal to zero.
- end
IDL Routines
fft(array,+-1)
Fourier Transform function fft(array,-1) is defined as:
{for
spectrum = fft( array,-1) }
and the inverse Fourier transform is:
{ array =
fft(spectrum,1) }
Both functions return a complex array of length N. It is stored in the usual way of positive
frequencies in 0-N/2 followed by the negative frequencies.
SHIFT(array, n)
Shifts the elements of the array 'n' points and wraps around at the edges.Example if A = { 0, 1,
2, 3, 4, 5 } then shift(A, 1) = { 5, 0, 1, 2, 3, 4 } and shift(A,-2) = { 2, 3, 4, 5, 0, 1
}
Additional Resources