; $Id: bilinear.pro,v 1.3 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1993-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. FUNCTION BILINEAR,P,IX,JY ;+ ; NAME: ; BILINEAR ; ; PURPOSE: ; Bilinearly interpolate a set of reference points. ; ; CALLING SEQUENCE: ; Result = BILINEAR(P, IX, JY) ; ; INPUTS: ; P: A two-dimensional data array. ; ; IX and JY: The "virtual subscripts" of P to look up values ; for the output. ; ; IX can be one of two types: ; 1) A one-dimensional, floating-point array of subscripts to look ; up in P. The same set of subscripts is used for all rows in ; the output array. ; 2) A two-dimensional, floating-point array that contains both ; "x-axis" and "y-axis" subscripts specified for all points in ; the output array. ; ; In either case, IX must satisfy the expression, ; 0 <= MIN(IX) < N0 and 0 < MAX(IX) <= N0 ; where N0 is the total number of subscripts in the first dimension ; of P. ; ; JY can be one of two types: ; 1) A one-dimensional, floating-point array of subscripts to look ; up in P. The same set of subscripts is used for all rows in ; the output array. ; 2) A two-dimensional, floating-point array that contains both ; "x-axis" and "y-axis" subscripts specified for all points in ; the output array. ; ; In either case JY must satisfy the expression, ; 0 <= MIN(JY) < M0 and 0 < MAX(JY) <= M0 ; where M0 is the total number of subscripts in the second dimension ; of P. ; ; It is better to use two-dimensional arrays for IX and JY when calling ; BILINEAR because the algorithm is somewhat faster. If IX and JY are ; one-dimensional, they are converted to two-dimensional arrays on ; return from the function. The new IX and JY can be re-used on ; subsequent calls to take advantage of the faster, 2D algorithm. The ; 2D array P is unchanged upon return. ; ; OUTPUT: ; The two-dimensional, floating-point, interpolated array. ; ; SIDE EFFECTS: ; This function can take a long time to execute. ; ; RESTRICTIONS: ; None. ; ; EXAMPLE: ; Suppose P = FLTARR(3,3), IX = [.1, .2], and JY = [.6, 2.1] then ; the result of the command: ; Z = BILINEAR(P, IX, JY) ; Z(0,0) will be returned as though it where equal to P(.1,.6) ; interpolated from the nearest neighbors at P(0,0), P(1,0), P(1,1) ; and P(0,1). ; ; PROCEDURE: ; Uses bilinear interpolation algorithm to evaluate each element ; in the result at virtual coordinates contained in IX and JY with ; the data in P. ; ; REVISION HISTORY: ; Nov. 1985 Written by L. Kramer (U. of Maryland/U. Res. Found.) ; Aug. 1990 TJA simple bug fix, contributed by Marion Legg of NASA Ames ; Sep. 1992 DMS, Scrapped the interpolat part and now use INTERPOLATE ;- ON_ERROR,2 ;Return to caller if an error occurs IF((N_ELEMENTS(IX) EQ 0) AND (N_ELEMENTS(JY) EQ 0)) THEN BEGIN I=FIX(IX) & J=FIX(JY) & IP=I+1 & JP=J+1 DX=IX-FLOAT(I) & DY=JY-FLOAT(J) DX1=(1.-DX) & DY1=(1.-DY) RETURN,( P[I,J]*DX1*DY1 + P[I,JP]*DX1*DY $ + P[IP,J]*DX*DY1 + P[IP,JP]*DX*DY) ENDIF A=SIZE(IX) & B=SIZE(JY) NX=A[1] IF(B[0] EQ 1) THEN BEGIN NY=B[1] ENDIF ELSE BEGIN NY=B[2] ENDELSE IF(A[0] EQ 1) THEN BEGIN TEMP=IX IX=FLTARR(NX,NY) FOR I=0,NY-1 DO IX[0,I]=TEMP ENDIF IF(B[0] EQ 1) THEN BEGIN TEMP=JY JY=FLTARR(NY,NX) FOR I=0,NX-1 DO JY[0,I]=TEMP JY=TRANSPOSE(JY) ENDIF return, interpolate(p, ix, jy) ;Use new interpolate function ; I=FIX(IX) & J=FIX(JY) ; IP=I+1 & JP=J+1 ; DX=IX-I & DY=JY-J ; DX1=1.-DX & DY1=1.-DY ; Z=FLTARR(N_ELEMENTS(I(*,0)),N_ELEMENTS(J(0,*))) ; NUMX=N_ELEMENTS(I) ; PZ=FLTARR(N_ELEMENTS(P(*,0))+1,N_ELEMENTS(P(0,*))+1) ; PZ(0,0)=P(0:*,0:*) ; FOR N=0L,NUMX-1 DO BEGIN ; Z(N)= PZ(I(N), J(N)) *DX1(N)*DY1(N) $ ; + PZ(I(N),JP(N)) *DX1(N)*DY(N) $ ; + PZ(IP(N),J(N)) *DX(N) *DY1(N) $ ; + PZ(IP(N),JP(N))*DX(N) *DY(N) ; ENDFOR ; RETURN,Z END