;$Id: binomial.pro,v 1.3 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; BINOMIAL ; ; PURPOSE: ; This function computes the probabilty (bp) such that: ; Probability(X => v) = bp ; where X is a random variable from the cumulative binomial distribution ; (Bernouli distribution). ; ; CATEGORY: ; Statistics. ; ; CALLING SEQUENCE: ; Result = Binomial(V, N, P) ; ; INPUTS: ; V: A non-negative integer specifying the minimal number of ; times an event E occurs in (N) independent performances. ; ; N: A non-negative integer specifying the number of performances. ; If the number of performances exceeds 25, the Gaussian ; distribution is used to approximate the cumulative binomial ; distribution. ; ; P: A non-negative scalar, in the interval [0.0, 1.0], of type ; float or double that specifies the probability of occurance ; or success of a single independent performance. ; ; EXAMPLES: ; Compute the probability of obtaining at least two 6s in rolling a ; die four times. The result should be 0.131944 ; result = binomial(2, 4, 1./6.) ; ; Compute the probability of obtaining exactly two 6s in rolling a ; die four times. The result should be 0.115741 ; result = binomial(2, 4, 1./6.) - binomial(3, 4, 1./6.) ; ; Compute the probability of obtaining three or fewer 6s in rolling ; a die four times. The result should be 0.999228 ; result = (binomial(0, 4, 1./6.) - binomial(1, 4, 1./6.)) + $ ; (binomial(1, 4, 1./6.) - binomial(2, 4, 1./6.)) + $ ; (binomial(2, 4, 1./6.) - binomial(3, 4, 1./6.)) + $ ; (binomial(3, 4, 1./6.) - binomial(4, 4, 1./6.)) ; ; PROCEDURE: ; BINOMIAL computes the probability that an event E occurs at least ; (V) times in (N) independent performances. The event E is assumed ; to have a probability of occurance or success (P) in a single ; performance. ; ; REFERENCE: ; ADVANCED ENGINEERING MATHEMATICS (seventh edition) ; Erwin Kreyszig ; ISBN 0-471-55380-8 ; ; MODIFICATION HISTORY: ; Modified by: GGS, RSI, July 1994 ; Minor changes to code. Rewrote documentation header. ;- function N_BANG, n, min, fac1 ;If min and fac1 are undefined, then N_BANG returns n!. ;Otherwise, fac1 * min * (min+1)....n is returned. if n_elements(min) eq 0 then min = 2 if n_elements(fac1) eq 0 then fac = 1. $ else fac = fac1 if min gt n then return, fac n1 = n < 10 if min lt 11 then $ for i = min, n1 do fac = i*fac if (n lt 11.) then return, fac n1 = 11 > min ;Use logarithms to preserve precision. return, fac * exp(total(alog(findgen(n-n1+1) + n1))) end function binomial, v, n, p on_error, 2 ;Return to caller if error occurs. if p lt 0. or p gt 1. then message, $ 'p must be in the interval [0.0, 1.0]' if v lt 0 then message, $ 'v must be nonnegative.' if n lt 0 then message, $ 'n must be nonnegative.' if v eq 0 then return, 1.0 $ else if n gt 25 then return, $ 1.0 - gauss_pdf((v-n*p)/sqrt(n*p*(1-p))) $ else if v gt n then return, 0.0 nn = fix(n) vv = fix(v) n2 = vv < (nn - vv) n3 = vv > (nn - vv) n1 = N_BANG(nn, n3+1, p) n1 = n1/N_BANG(n2) sum = n1 * p^(vv-1) * (1-p)^(nn-vv) for i = vv+1, nn do begin n1 = (nn-i+1) * n1/float(i) sum = sum + n1 * p^(i-1) * (1-p)^(nn-i) endfor return, sum end