;$Id: comfit.pro,v 1.7 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; COMFIT ; ; PURPOSE: ; This function fits the paired data {X(i), Y(i)} to one of six common ; types of appoximating models using a gradient-expansion least-squares ; method. The result is a vector containing the model parameters. ; ; CATEGORY: ; Statistics. ; ; CALLING SEQUENCE: ; Result = COMFIT(X, Y, A) ; ; INPUTS: ; X: An n-element vector of type integer, float or double. ; ; Y: An n-element vector of type integer, float or double. ; ; A: A vector of initial estimates for each model parameter. The length ; of this vector depends upon the type of model selected. ; ; KEYWORD PARAMETERS: ; EXPONENTIAL: If set to a non-zero value, the parameters of the ; exponential model are computed. Y = a0 * a1^x + a2. ; ; GEOMETRIC: If set to a non-zero value, the parameters of the ; geometric model are computed. Y = a0 * x^a1 + a2. ; ; GOMPERTZ: If set to a non-zero value, the parameters of the ; Gompertz model are computed. Y = a0 * a1^(a2*x) + a3. ; ; HYPERBOLIC: If set to a non-zero value, the parameters of the ; hyperbolic model are computed. Y = 1./(a0 + a1*x) ; ; LOGISTIC: If set to a non-zero value, the parameters of the ; logistic model are computed. Y = 1./(a0 * a1^x + a2) ; ; LOGSQUARE: If set to a non-zero value, the parameters of the ; logsquare model are computed. ; Y = a0 + a1*alog10(x) + a2 * alog10(x)^2 ; ; SIGMA: Use this keyword to specify a named variable which ; returns a vector of standard deviations for the computed ; model parameters. ; ; WEIGHTS: An n-element vector of weights. If the WEIGHTS vector ; is not specified, an n-element vector of 1.0s is used. ; ; YFIT: Use this keyword to specify a named variable which ; returns n-element vector of y-data corresponding to the ; computed model parameters. ; ; EXAMPLE: ; Define two n-element vectors of paired data. ; x = [2.27, 15.01, 34.74, 36.01, 43.65, 50.02, 53.84, 58.30, 62.12, $ ; 64.66, 71.66, 79.94, 85.67, 114.95] ; y = [5.16, 22.63, 34.36, 34.92, 37.98, 40.22, 41.46, 42.81, 43.91, $ ; 44.62, 46.44, 48.43, 49.70, 55.31] ; Define a 3-element vector of initial estimates for the logsquare model. ; a = [1.5, 1.5, 1.5] ; Compute the model parameters of the logsquare model, a(0), a(1), & a(2). ; result = comfit(x, y, a, sigma = sigma, yfit = yfit, /logsquare) ; The result should be the 3-element vector: ; [1.42494, 7.21900, 9.18794] ; ; REFERENCE: ; APPLIED STATISTICS (third edition) ; J. Neter, W. Wasserman, G.A. Whitmore ; ISBN 0-205-10328-6 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, September 1994 ;- pro exp_func, x, a, f, pder f = a[0] * a[1]^x + a[2] if n_params() ge 4 then $ pder = [[a[1]^x], [a[0] * x * a[1]^(x-1)], [replicate(1., n_elements(x))]] end pro geo_func, x, a, f, pder f = a[0] * x^a[1] + a[2] if n_params() ge 4 then $ pder = [[x^a[1]], [a[0] * alog(x) * x^a[1]], [replicate(1., n_elements(x))]] end pro gom_func, x, a, f, pder f = a[0] * a[1]^(a[2]*x) + a[3] if n_params() ge 4 then $ pder = [[a[1]^(a[2]*x)], [a[0] * a[2] * x * a[1]^(a[2]*x-1)], $ [a[0] * x * alog(a[1]) * a[1]^(a[2]*x)], [replicate(1., n_elements(x))]] end pro hyp_func, x, a, f, pder f = 1.0 / (a[0] + a[1] * x) if n_params() ge 4 then $ pder = [[-1.0 / (a[0] + a[1] * x)^2], [-x / (a[0] + a[1] * x)^2]] end pro log_func, x, a, f, pder f = 1.0 / (a[0] * a[1]^x + a[2]) if n_params() ge 4 then begin denom = -1.0/(a[0] * a[1]^x + a[2])^2 pder = [[a[1]^x*denom], [a[0] * x * a[1]^(x-1)*denom], [denom]] endif end pro logsq_func, x, a, f, pder b = alog10(x) b2 = b^2 f = a[0] + a[1] * b + a[2] * b2 if n_params() ge 4 then $ pder = [[replicate(1., n_elements(x))], [b], [b2]] end function comfit, x, y, a, weights = weights, sigma = sigma, yfit = yfit, $ exponential = exponential, geometric = geometric, $ gompertz = gompertz, hyperbolic = hyperbolic, $ logistic = logistic, logsquare = logsquare on_error, 2 fcn_names = ['exp_func', 'geo_func', 'gom_func', 'hyp_func', 'log_func', $ 'logsq_func'] fcn_npar = [ 3, 3, 4, 2, 3, 3] nx = n_elements(x) wx = n_elements(weights) if nx ne n_elements(y) then $ message, 'x and y must be vectors of equal length.' if wx eq 0 then weights = replicate(1.0, nx) $ else if wx ne nx then $ message, 'x and weights must be vectors of equal length.' a1 = A ;Copy initial guess if keyword_set(exponential) then i = 0 $ else if keyword_set(geometric) then i = 1 $ else if keyword_set(gompertz) then i = 2 $ else if keyword_set(hyperbolic) then i = 3 $ else if keyword_set(logistic) then i = 4 $ else if keyword_set(logsquare) then i = 5 $ else message, 'Type of model must be supplied as a keyword parameter.' if n_elements(a1) ne fcn_npar[i] then $ message, 'A must be supplied as a '+strtrim(fcn_npar[i], 2) + $ '-element initial guess vector.' yfit = curvefit(x, y, weights, a1, sigma, function_name = fcn_names[i]) return, a1 end