; $Id: congrid.pro,v 1.5 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1988-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ; ;+ ; NAME: ; CONGRID ; ; PURPOSE: ; Shrink or expand the size of an array by an arbitrary amount. ; This IDL procedure simulates the action of the VAX/VMS ; CONGRID/CONGRIDI function. ; ; This function is similar to "REBIN" in that it can resize a ; one, two, or three dimensional array. "REBIN", however, ; requires that the new array size must be an integer multiple ; of the original size. CONGRID will resize an array to any ; arbitrary size (REBIN is somewhat faster, however). ; REBIN averages multiple points when shrinking an array, ; while CONGRID just resamples the array. ; ; CATEGORY: ; Array Manipulation. ; ; CALLING SEQUENCE: ; array = CONGRID(array, x, y, z) ; ; INPUTS: ; array: A 1, 2, or 3 dimensional array to resize. ; Data Type : Any type except string or structure. ; ; x: The new X dimension of the resized array. ; Data Type : Int or Long (greater than or equal to 2). ; ; OPTIONAL INPUTS: ; y: The new Y dimension of the resized array. If the original ; array has only 1 dimension then y is ignored. If the ; original array has 2 or 3 dimensions then y MUST be present. ; ; z: The new Z dimension of the resized array. If the original ; array has only 1 or 2 dimensions then z is ignored. If the ; original array has 3 dimensions then z MUST be present. ; ; KEYWORD PARAMETERS: ; INTERP: If set, causes linear interpolation to be used. ; Otherwise, the nearest-neighbor method is used. ; ; CUBIC: If specified and non-zero, "Cubic convolution" ; interpolation is used. This is a more ; accurate, but more time-consuming, form of interpolation. ; CUBIC has no effect when used with 3 dimensional arrays. ; If this parameter is negative and non-zero, it specifies the ; value of the cubic interpolation parameter as described ; in the INTERPOLATE function. Valid ranges are -1 <= Cubic < 0. ; Positive non-zero values of CUBIC (e.g. specifying /CUBIC) ; produce the default value of the interpolation parameter ; which is -1.0. ; ; MINUS_ONE: ; If set, will prevent CONGRID from extrapolating one row or ; column beyond the bounds of the input array. For example, ; If the input array has the dimensions (i, j) and the ; output array has the dimensions (x, y), then by ; default the array is resampled by a factor of (i/x) ; in the X direction and (j/y) in the Y direction. ; If MINUS_ONE is present (AND IS NON-ZERO) then the array ; will be resampled by the factors (i-1)/(x-1) and (j-1)/(y-1). ; ; OUTPUTS: ; The returned array has the same number of dimensions as the original ; array and is of the same data type. The returned array will have ; the dimensions (x), (x, y), or (x, y, z) depending on how many ; dimensions the input array had. ; ; PROCEDURE: ; IF the input array has three dimensions, or if INTERP is set, ; then the IDL interpolate function is used to interpolate the ; data values. ; If the input array has two dimensions, and INTERP is NOT set, ; then the IDL POLY_2D function is used for nearest neighbor sampling. ; If the input array has one dimension, and INTERP is NOT set, ; then nearest neighbor sampling is used. ; ; EXAMPLE: ; ; vol is a 3-D array with the dimensions (80, 100, 57) ; ; Resize vol to be a (90, 90, 80) array ; vol = CONGRID(vol, 90, 90, 80) ; ; MODIFICATION HISTORY: ; DMS, Sept. 1988. ; DMS, Added the MINUS_ONE keyword, Sept. 1992. ; Daniel Carr. Re-wrote to handle one and three dimensional arrays ; using INTERPOLATE function. ; DMS, RSI, Nov, 1993. Added CUBIC keyword. ;- FUNCTION CONGRID, arr, x, y, z, Interp=int, Minus_One=m1, Cubic = cubic ON_ERROR, 2 ;Return to caller if error s = Size(arr) IF ((s[0] EQ 0) OR (s[0] GT 3)) THEN $ Message, 'Array must have 1, 2, or 3 dimensions.' ; Supply defaults = no interpolate, and no minus_one. if n_elements(int) le 0 then int = 0 else int = keyword_set(int) if n_elements(m1) le 0 then m1 = 0 else m1 = keyword_set(m1) if n_elements(cubic) eq 0 then cubic = 0 if cubic ne 0 THEN int = 1 ;Cubic implies interpolate CASE s[0] OF 1: BEGIN ; *** ONE DIMENSIONAL ARRAY srx = float(s[1] - m1)/(x-m1) * findgen(x) ;subscripts IF int THEN $ RETURN, INTERPOLATE(arr, srx, CUBIC = cubic) ELSE $ RETURN, arr[ROUND(srx)] ENDCASE 2: BEGIN ; *** TWO DIMENSIONAL ARRAY IF int THEN BEGIN srx = float(s[1] - m1) / (x-m1) * findgen(x) sry = float(s[2] - m1) / (y-m1) * findgen(y) RETURN, INTERPOLATE(arr, srx, sry, /GRID, CUBIC=cubic) ENDIF ELSE $ RETURN, POLY_2D(arr, $ [[0,0],[(s[1]-m1)/float(x-m1),0]], $ ;Use poly_2d [[0,(s[2]-m1)/float(y-m1)],[0,0]],int,x,y) ENDCASE 3: BEGIN ; *** THREE DIMENSIONAL ARRAY srx = float(s[1] - m1) / (x-m1) * findgen(x) sry = float(s[2] - m1) / (y-m1) * findgen(y) srz = float(s[3] - m1) / (z-m1) * findgen(z) RETURN, interpolate(arr, srx, sry, srz, /grid) ENDCASE ENDCASE RETURN, arr_r END