; $Id: derivsig.pro,v 1.3 1996/12/17 23:43:58 lubos Exp $ Function Derivsig, X, Y, sigx, sigy ;+ ; NAME: ; DERIVSIG ; ; PURPOSE: ; This function computes the standard deviation of a derivative ; as found by the DERIV function, using the input variables of ; DERIV and the standard deviations of those input variables. ; ; CATEGORY: ; Numerical analysis. ; ; CALLING SEQUENCE: ; sigDy = Derivsig(sigy) ;sigma(Dy(i)/di), point spacing = 1. ; sigDy = Derivsig(X,Y,sigx,sigy) ;sigma(Dy/Dx), unequal point spacing. ; ; INPUTS: ; Y: The variable to be differentiated. Omit if X is omitted. ; X: The Variable to differentiate with respect to. If omitted, ; unit spacing is assumed for Y, i.e. X(i) = i. ; sigy: The standard deviation of Y. (Vector if used alone in ; call, vector or constant if used with other parameters) ; sigx: The standard deviation of X (either vector or constant). ; Use "0.0" if the abscissa is exact; omit if X is omitted. ; ; OPTIONAL INPUT PARAMETERS: ; As above. ; ; OUTPUTS: ; This function returns the standard deviation of the derivative. ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; PROCEDURE: ; See Bevington, "Data Analysis and Reduction for the Physical ; Sciences," McGraw-Hill (1969), Chap 4. ; ; MODIFICATION HISTORY: ; Written by Richard Bonomo at the University of Wisconsin - Madison ; department of Electrical and Computer Engineering, July, 1991. ; "DERIV" written by DMS, Aug, 1984. ;- ; on_error,2 ;Return to caller if an error occurs prms=n_params(0) n = n_elements(x) if (n lt 3) and (prms gt 1) then message, 'X must have at least 3 points' if (n lt 3) and (prms eq 1) then message, $ 'sigy must be a vector of at least 3 points if used alone' if ((prms ne 1) and (prms ne 4)) then message,$ 'function DERIVSIG must be called with either 1 or 4 parameters' if prms eq 1 then begin ; unit spacing assumed sigy=x if n_elements(sigy) eq 1 then sigy=fltarr(n) + sigy sigd=sqrt(0.25*(shift(sigy,-1)*shift(sigy,-1) + $ shift(sigy,1)*shift(sigy,1))) sigd[0]=sqrt(0.25*(sigy[0]^2*9.0 + sigy[1]^2*16.0 + sigy[2]^2)) sigd[n-1]=sqrt(0.25*(sigy[n-1]^2*9.0 + sigy[n-2]*16.0 + sigy[n-3])) endif if prms eq 4 then begin if n ne n_elements(y) then message,'Vectors must have same size' if n_elements(sigy) eq 1 then sigy=fltarr(n) + sigy nix=n_elements(sigx) if (nix eq 1) and (sigx[0] ne 0.0) then sigx=fltarr(n) + sigx nix=n_elements(sigx) if (nix ne n) and (nix ne 1) then message,$ 'sigx vector must have the same length as X, or be a scalar' dsq=shift(x,-1)-shift(x,1) dsq=dsq*dsq dy=shift(y,-1)-shift(y,1) sigd=(shift(sigy,-1)*shift(sigy,-1) + shift(sigy,1)*shift(sigy,1))/dsq if (nix ne 1) then sigd=sigd + (shift(sigx,-1)^2*dy^2 + $ shift(sigx,1)^2*dy^2)/(dsq*dsq) sigd=sqrt(sigd) dsq=x[2]-x[0] dsq=dsq*dsq ; sigd[0]=(sigy[0]^2*9.0 + sigy[1]^2*16.0 + sigy[2]^2)/dsq if (nix ne 1) then sigd[0] = sigd[0] + (sigx[2]^2*(3.0*y[0] - $ 4.0*y[1] + y[2])^2 + sigx[0]^2*(-3.0*y[0] + 4.0*y[1] - y[2])^2)/$ (dsq*dsq) sigd[0]=sqrt(sigd[0]) ; dsq=x[n-1]-x[n-3] dsq=dsq*dsq sigd[n-1]=(sigy[n-1]^2*9.0 + sigy[n-2]^2*16.0 + sigy[n-3]^2)/dsq if (nix ne 1) then sigd[n-1] = sigd[n-1] + (sigx[n-1]^2*(-3.0*y[n-1]$ + 4.0*y[n-2] - y[n-3])^2 + sigx[n-3]^2*(3.0*y[n-1] - 4.0*y[n-2]$ + y[n-3])^2)/(dsq*dsq) sigd[n-1]=sqrt(sigd[n-1]) endif return, sigd end