;$Id: factorial.pro,v 1.3 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; FACTORIAL ; ; PURPOSE: ; This function computes the factorial N! as the double-precision ; product, (N) * (N-1) * (N-2) * ...... * 3 * 2 * 1. ; ; CATEGORY: ; Special Functions. ; ; CALLING SEQUENCE: ; Result = Factorial(n) ; ; INPUTS: ; N: A non-negative scalar of type integer, float or double. ; ; KEYWORD PARAMETERS: ; STIRLING: If set to a non-zero value, Stirling's asymptotic ; formula is used to approximate N!. ; ; EXAMPLE: ; Compute 20! with and without Stirling's asymptotic formula. ; result_1 = factorial(20, /stirling) ; result_2 = factorial(20) ; ; Result_1 and result_2 should be 2.4227869e+18 and 2.4329020e+18 ; respectively. ; ; REFERENCE: ; ADVANCED ENGINEERING MATHEMATICS (seventh edition) ; Erwin Kreyszig ; ISBN 0-471-55380-8 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, November 1994 ;- function factorial, n, stirling = stirling ;Computes N! as (N) * (N-1) * (N-2) * ...... * 3 * 2 * 1 ;Test example: 20! = 2.4329020e+18 ;Use NR_MACHAR(/DOUBLE) to determine largest floating point number. ;Stirling's formula: N! = SQRT(2.0d*!PI*N) * (N/EXP(1.0d))^(N+0.0d) on_error, 2 if n lt 0 then $ message, 'n must be a non-negative scalar.' ;Computes N! as (N) * (N-1) * (N-2) * ...... * 3 * 2 * 1 if keyword_set(stirling) eq 0 then begin fact = 1.0d for k = n+0.0d, 1d, -1d do begin fact = fact * k endfor endif else $ ;Approximate N! using Stirling's formula. fact = sqrt(2.0d * !pi * n) * (n / exp(1.0d))^(n+0.0d) return, fact end