; $Id: gauss2dfit.pro,v 1.3 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1995-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ; PRO GAUSS2_FUNCT, X, A, F, PDER ;+ ; NAME: ; GAUSS2_FUNCT ; PURPOSE: ; Evaluate function for gauss2fit. ; CALLING SEQUENCE: ; FUNCT,X,A,F,PDER ; INPUTS: ; X = values of independent variables, encoded as: [nx, ny, x, y] ; A = parameters of equation described below. ; OUTPUTS: ; F = value of function at each X(i,j), Y(i,j). ; Function is: ; F(x,y) = A0 + A1*EXP(-U/2) ; where: U= (yp/A2)^2 + (xp/A3)^2 ; ; If A has 7 elements a rotation of the ellipse is present and: ; xp = (x-A4) * cos(A6) - (y-A5) * sin(A6) ; yp = (x-A4) * sin(A6) + (y-A5) * cos(A6) ; If A has 6 elements, A6 (theta) is 0, the major and minor axes ; of the ellipse are parallel to the XY axes, and: ; xp = (x-A4) and yp = (x-A5) ; ; Optional output parameters: ; PDER = (n_elements(z),6 or 7) array containing the ; partial derivatives. pder(i,j) = derivative ; at ith point w/respect to jth parameter. ; PROCEDURE: ; Evaluate the function and then if requested, eval partials. ; ; MODIFICATION HISTORY: ; WRITTEN, DMS, RSI, June, 1995. ;- nx = long(x[0]) ;Retrieve X and Y vectors ny = long(x[1]) tilt = n_elements(a) eq 7 ;TRUE if angle present. if tilt then begin ;Rotate? xp = (x[2:nx+1]-a[4]) # replicate(1.0, ny) ;Expand X values yp = replicate(1.0, nx) # (x[nx+2:*]-a[5]) ;expand Y values s = sin(A[6]) & c = cos(A[6]) t = xp * (c/a[2]) - yp * (s/a[2]) yp = xp * (s/a[3]) + yp * (c/a[3]) xp = temporary(t) endif else begin xp = (x[2:nx+1]-a[4]) # replicate(1.0/a[2], ny) ;Expand X values yp = replicate(1.0/a[3], nx) # (x[nx+2:*]-a[5]) ;expand Y values s = 0.0 & c = 1.0 endelse n = nx * ny u = reform(exp(-0.5 * (xp^2 + yp^2)), n) ;Exp() term, Make it 1D F = a[0] + a[1] * u if n_params(0) le 3 then return ;need partial? No. PDER = FLTARR(n, n_elements(a)) ;YES, make partial array. PDER[*,0] = 1.0 ;And fill. pder[0,1] = u u = a[1] * u ;Common term for the rest of the partials pder[0,2] = u * xp^2 / a[2] pder[0,3] = u * yp^2 / a[3] pder[0,4] = u * (c/a[2] * xp + s/a[3] * yp) pder[0,5] = u * (-s/a[2] * xp + c/a[3] * yp) if tilt then pder[0,6] = u * xp*yp*(a[2]/a[3]-a[3]/a[2]) END Function Gauss2dfit, z, a, x, y, NEGATIVE = neg, TILT=tilt ;+ ; NAME: ; GAUSS2DFIT ; ; PURPOSE: ; Fit a 2 dimensional elliptical gaussian equation to rectilinearly ; gridded data. ; Z = F(x,y) where: ; F(x,y) = A0 + A1*EXP(-U/2) ; And the elliptical function is: ; U= (x'/a)^2 + (y'/b)^2 ; The parameters of the ellipse U are: ; Axis lengths are 2*a and 2*b, in the unrotated X and Y axes, ; respectively. ; Center is at (h,k). ; Rotation of T radians from the X axis, in the CLOCKWISE direction. ; The rotated coordinate system is defined as: ; x' = (x-h) * cos(T) - (y-k) * sin(T) ; y' = (x-h) * sin(T) + (y-k) * cos(T) ; ; The rotation is optional, and may be forced to 0, making the major/ ; minor axes of the ellipse parallel to the X and Y axes. ; ; The coefficients of the function, are returned in a seven ; element vector: ; a(0) = A0 = constant term. ; a(1) = A1 = scale factor. ; a(2) = a = width of gaussian in X direction. ; a(3) = b = width of gaussian in Y direction. ; a(4) = h = center X location. ; a(5) = k = center Y location. ; a(6) = T = Theta the rotation of the ellipse from the X axis ; in radians, counterclockwise. ; ; ; CATEGORY: ; curve / data fitting ; ; CALLING SEQUENCE: ; Result = GAUSS2DFIT(z, a [,x,y]) ; ; INPUTS: ; Z = dependent variable in a 2D array dimensioned (Nx, Ny). Gridding ; must be rectilinear. ; X = optional Nx element vector containing X values of Z. X(i) = X value ; for Z(i,j). If omitted, a regular grid in X is assumed, ; and the X location of Z(i,j) = i. ; Y = optional Ny element vector containing Y values of Z. Y(j) = Y value ; for Z(i,j). If omitted, a regular grid in Y is assumed, ; and the Y location of Z(i,j) = j. ; ; Optional Keyword Parameters: ; NEGATIVE = if set, implies that the gaussian to be fitted ; is a valley (such as an absorption line). ; By default, a peak is fit. ; TILT = if set to 1, allow the orientation of the major/minor axes of ; the ellipse to be unrestricted. The default is that ; the axes of the ellipse must be parallel to the X-Y axes. ; In this case, A(6) is always returned as 0. ; ; OUTPUTS: ; The fitted function is returned. ; OUTPUT PARAMETERS: ; A: The coefficients of the fit. A is a seven element vector as ; described under PURPOSE. ; ; COMMON BLOCKS: ; None. ; SIDE EFFECTS: ; None. ; RESTRICTIONS: ; Timing: Approximately 4 seconds for a 128 x 128 array, on a ; Sun SPARC LX. Time required is roughly proportional to the ; number of elements in Z. ; ; PROCEDURE: ; The peak/valley is found by first smoothing Z and then finding the ; maximum or minimum respectively. Then GAUSSFIT is applied to the row ; and column running through the peak/valley to estimate the parameters ; of the Gaussian in X and Y. Finally, CURVEFIT is used to fit the 2D ; Gaussian to the data. ; ; Be sure that the 2D array to be fit contains the entire Peak/Valley ; out to at least 5 to 8 half-widths, or the curve-fitter may not ; converge. ; ; EXAMPLE: This example creates a 2D gaussian, adds random noise ; and then applies GAUSS2DFIT: ; nx = 128 ;Size of array ; ny = 100 ; ;** Offs Scale X width Y width X cen Y cen ** ; ;** A0 A1 a b h k ** ; a = [ 5., 10., nx/6., ny/10., nx/2., .6*ny] ;Input function parameters ; x = findgen(nx) # replicate(1.0, ny) ;Create X and Y arrays ; y = replicate(1.0, nx) # findgen(ny) ; u = ((x-a(4))/a(2))^2 + ((y-a(5))/a(3))^2 ;Create ellipse ; z = a(0) + a(1) * exp(-u/2) ;to gaussian ; z = z + randomn(seed, nx, ny) ;Add random noise, SD = 1 ; yfit = gauss2dfit(z,b) ;Fit the function, no rotation ; print,'Should be:',string(a,format='(6f10.4)') ;Report results.. ; print,'Is: :',string(b(0:5),format='(6f10.4)') ; ; MODIFICATION HISTORY: ; DMS, RSI, June, 1995. ;- ; on_error,2 ;Return to caller if an error occurs s = size(z) if s[0] ne 2 then $ message, 'Z must have two dimensions' n = n_elements(z) nx = s[1] ny = s[2] np = n_params() if np lt 3 then x = findgen(nx) if np lt 4 then y = findgen(ny) if nx ne n_elements(x) then $ message,'X array must have size equal to number of columns of Z' if ny ne n_elements(y) then $ message,'Y array must have size equal to number of rows of Z' if keyword_set(neg) then q = MIN(SMOOTH(z,3), i) $ ELSE q = MAX(SMOOTH(z,3), i) ;Dirty peak / valley finder ix = i mod nx iy = i / nx x0 = x[ix] y0 = y[iy] xfit = gaussfit(x, z[*,iy], ax, NTERMS=4) ;Guess at params by taking slices yfit = gaussfit(y, z[ix,*], ay, NTERMS=4) ; First guess, without XY term... a = [ (ax[3] + ay[3])/2., $ ;Constant sqrt(abs(ax[0] * ay[0])), $ ;Exponential factor ax[2], ay[2], ax[1], ay[1]] ;Widths and centers ; If there's a tilt, add the XY term = 0 if Keyword_set(tilt) then a = [a, 0.0] ;************* print,'1st guess:',string(a,format='(8f10.4)') result = curvefit([nx, ny, x, y], reform(z, n, /OVERWRITE), $ replicate(1.,n), a, itmax=50, $ function_name = "GAUSS2_FUNCT", /NODERIVATIVE) ; If we didn't already have an XY term, add it = 0.0 if Keyword_set(tilt) eq 0 then a = [a, 0.0] $ else a[6] = a[6] mod !pi ;Reduce angle argument z= REFORM(z, nx, ny, /OVERWRITE) ;Restore dimensions return, REFORM(result, nx, ny, /OVERWRITE) end