;$Id: ibeta.pro,v 1.4 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; IBETA ; ; PURPOSE: ; This function computes the incomplete beta function, Ix(a, b). ; ; CATEGORY: ; Special Functions. ; ; CALLING SEQUENCE: ; Result = Ibeta(a, b, x) ; ; INPUTS: ; A: A positive scalar of type integer, float or double that ; specifies the parametric exponent of the integrand. ; ; B: A positive scalar of type integer, float or double that ; specifies the parametric exponent of the integrand. ; ; X: A scalar, in the interval [0, 1], of type integer, float ; or double that specifies the upper limit of integration. ; ; EXAMPLE: ; Compute the incomplete beta function for the corresponding elements ; of A, B, and X. ; Define the parametric exponents. ; A = [0.5, 0.5, 1.0, 5.0, 10.0, 20.0] ; B = [0.5, 0.5, 0.5, 5.0, 5.0, 10.0] ; Define the the upper limits of integration. ; X = [0.01, 0.1, 0.1, 0.5, 1.0, 0.8] ; Allocate an array to store the results. ; result = fltarr(n_elements(A)) ; Compute the incomplete beta functions. ; for k = 0, n_elements(A)-1 do $ ; result(k) = Ibeta(A(k), B(k), X(k)) ; The result should be: ; [0.0637686, 0.204833, 0.0513167, 0.500000, 1.00000, 0.950736] ; ; REFERENCE: ; Numerical Recipes, The Art of Scientific Computing (Second Edition) ; Cambridge University Press ; ISBN 0-521-43108-5 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, September 1994 ; IBETA is based on the routines: betacf.c, betai.c and ; gammln.c described in section 6.2 of Numerical Recipes, ; The Art of Scientific Computing (Second Edition), and is ; used by permission. ;- function betacf, a, b, x on_error, 2 eps = 3.0e-7 fpmin = 1.0e-30 maxit = 100 qab = a + b qap = a + 1.0 qam = a - 1.0 c = 1.0 d = 1.0 - qab * x / qap if(abs(d) lt fpmin) then d = fpmin d = 1.0 / d h = d for m = 1, maxit do begin m2 = 2 * m aa = m * (b - m) * x / ((qam + m2) * (a + m2)) d = 1.0 + aa*d if(abs(d) lt fpmin) then d = fpmin c = 1.0 + aa / c if(abs(c) lt fpmin) then c = fpmin d = 1.0 / d h = h * d * c aa = -(a + m) *(qab + m) * x/((a + m2) * (qap + m2)) d = 1.0 + aa * d if(abs(d) lt fpmin) then d = fpmin c = 1.0 + aa / c if(abs(c) lt fpmin) then c = fpmin d = 1.0 / d del = d * c h = h * del if(abs(del - 1.0) lt eps) then return, h endfor message, 'Failed to converge within given parameters.' end function gammln, xx coff = [76.18009172947146d0, -86.50532032941677d0, $ 24.01409824083091d0, -1.231739572450155d0, $ 0.1208650973866179d-2, -0.5395239384953d-5] stp = 2.5066282746310005d0 x = xx y = x tmp = x + 5.5d0 tmp = (x + 0.5d0) * alog(tmp) - tmp ser = 1.000000000190015d0 for j = 0, n_elements(coff)-1 do begin y = y + 1.d0 ser = ser + coff[j] / y endfor return, tmp + alog(stp * ser / x) end function ibeta, a, b, x on_error, 2 if (x lt 0 or x gt 1) then message, $ 'x must be in the interval [0, 1].' if (a le 0 or b le 0) then message, $ 'a and b must be positive scalars.' if (x eq 0 or x eq 1) then bt = 0.0 $ else $ bt = exp(lngamma(a + b) - lngamma(a) - lngamma(b) + $ a * alog(x) + b * alog(1.0 - x)) ;bt = exp(gammln(a + b) - gammln(a) - gammln(b) + $ ; a * alog(x) + b * alog(1.0 - x)) if(x lt (a + 1.0)/(a + b + 2.0)) then return, $ bt * betacf(a, b, x) / a $ else return, 1.0 - bt * betacf(b, a, 1.0-x) / b end