;$Id: igamma.pro,v 1.4 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; IGAMMA ; ; PURPOSE: ; This function computes the incomplete gamma function, Px(a). ; ; CATEGORY: ; Special Functions. ; ; CALLING SEQUENCE: ; Result = Igamma(a, x) ; ; INPUTS: ; A: A positive scalar of type integer, float or double that ; specifies the parametric exponent of the integrand. ; ; X: A positive scalar of type integer, float or double that ; specifies the upper limit of integration. ; ; KEYWORD PARAMETERS: ; METHOD: Use this keyword to specify a named variable which returns ; the method used to compute the incomplete gamma function. ; A value of 0 indicates that a power series representation ; was used. A value of 1 indicates that a continued fractions ; method was used. ; ; EXAMPLE: ; Compute the incomplete gamma function for the corresponding elements ; of A and X. ; Define the parametric exponents. ; A = [0.10, 0.50, 1.00, 1.10, 6.00, 26.00] ; Define the the upper limits of integration. ; X = [0.0316228, 0.0707107, 5.00000, 1.04881, 2.44949, 25.4951] ; Allocate an array to store the results. ; result = fltarr(n_elements(A)) ; Compute the incomplete gamma functions. ; for k = 0, n_elements(A)-1 do $ ; result(k) = Igamma(A(k), X(k)) ; The result should be: ; [0.742026, 0.293128, 0.993262, 0.607646, 0.0387318, 0.486387] ; ; PROCEDURE: ; IGAMMA computes the incomplete gamma function, Px(a), using either ; a power series representation or a continued fractions method. If X ; is less than or equal to A+1, a power series representation is used. ; If X is greater than A+1, a continued fractions method is used. ; ; REFERENCE: ; Numerical Recipes, The Art of Scientific Computing (Second Edition) ; Cambridge University Press ; ISBN 0-521-43108-5 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, September 1994 ; IGAMMA is based on the routines: gser.c, gcf.c, and ; gammln.c described in section 6.2 of Numerical Recipes, ; The Art of Scientific Computing (Second Edition), and is ; used by permission. ; Modified: GGS, RSI, January 1996 ; Corrected the case of IGAMMA(a, 0) for a > 0. ;- function igamma, a, x, itmax = itmax, method = method on_error, 2 if a le 0 or x lt 0 then $ message, 'a and x must be positive scalars.' if x eq 0.0 then return, 0.0 eps = 3.0e-7 fpmin = 1.0e-30 if keyword_set(itmax) eq 0 then itmax = 100 if x le (a + 1) then begin ;Series Representation. method = 0 ap = a sum = 1.0 / a del = sum for k = 1, itmax do begin ap = ap + 1.0 del = del * x / ap sum = sum + del if abs(del) lt abs(sum)*eps then return, $ sum * exp(-x + a * alog(x) - lngamma(a)) endfor endif else begin ;Continued Fractions. method = 1 b = x + 1.0 - a c = 1.0 / fpmin d = 1.0 / b h = d for k = 1, itmax do begin an = -k * (k - a) b = b + 2 d = an * d + b if abs(d) lt fpmin then d = fpmin c = b + an / c if abs(c) lt fpmin then c = fpmin d = 1.0 / d del = d * c h = h * del if abs(del - 1) lt eps then return, $ 1 - (exp(-x + a * alog(x) - lngamma(a)) * h) endfor endelse message, 'Failed to converge within given parameters.' end