; $Id: krig2d.pro,v 1.8 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1993-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. FUNCTION Krig_expon, d, t ;Return Exponential Covariance Fcn r = t[2] * exp((-3./t[0]) * d) z = where(d eq 0.0, count) if count gt 0 then r[z] = t[1] + t[2] return, r end FUNCTION Krig_sphere, d, t ;Return Spherical Covariance Fcn r = d/t[0] < 1.0 ;Normalized distance r = t[2] * (1. - 1.5 * r + 0.5 * r^3) z = where(d eq 0.0, count) if count gt 0 then r[z] = t[1] + t[2] return, r end FUNCTION krig2d, z, x, y, REGULAR = regular, XGRID=xgrid, $ XVALUES = xvalues, YGRID = ygrid, YVALUES = yvalues, $ GS = gs, BOUNDS = bounds, NX = nx0, NY = ny0, EXPONENTIAL = ex, $ SPHERICAL = sp, NESTED = nest, C0 = C0 ;+ ; NAME: ; KRIG_2D ; ; PURPOSE: ; This function interpolates a regularly or irregularly gridded ; set of points Z = F(X,Y) using kriging. ; ; CATEGORY: ; Interpolation, Surface Fitting ; ; CALLING SEQUENCE: ; Result = KRIG2D(Z [, X, Y]) ; ; INPUTS: ; X, Y, Z: arrays containing the X, Y, and Z coordinates of the ; data points on the surface. Points need not be ; regularly gridded. For regularly gridded input data, ; X and Y are not used: the grid spacing is specified ; via the XGRID and YGRID (or XVALUES and YVALUES) ; keywords, and Z must be a two dimensional array. ; For irregular grids, all three parameters must be ; present and have the same number of elements. ; ; KEYWORD PARAMETERS: ; Model Parameters: ; EXPONENTIAL: if set (with parameters [A, C0, C1]), use an exponential ; semivariogram model. ; SPHERICAL: if set (with parameters [A, C0, C1]), use a spherical ; semivariogram model. ; ; Both models use the following parameters: ; A: the range. At distances beyond A, the semivariogram ; or covariance remains essentialy constant. ; See the definition of the functions below. ; C0: the "nugget," which provides a discontinuity at the ; origin. ; C1: the covariance value for a zero distance, and the variance ; of the random sample Z variable. If only a two element ; vector is supplied, C1 is set to the sample variance. ; (C0 + C1) = the "sill," which is the variogram value for ; very large distances. ; ; Input grid description: ; REGULAR: if set, the Z parameter is a two dimensional array ; of dimensions (N,M), containing measurements over a ; regular grid. If any of XGRID, YGRID, XVALUES, YVALUES ; are specified, REGULAR is implied. REGULAR is also ; implied if there is only one parameter, Z. If REGULAR is ; set, and no grid (_VALUE or _GRID) specifications are ; present, the respective grid is set to (0, 1, 2, ...). ; XGRID: contains a two element array, [xstart, xspacing], ; defining the input grid in the X direction. Do not ; specify both XGRID and XVALUES. ; XVALUES: if present, XVALUES(i) contains the X location ; of Z(i,j). XVALUES must be dimensioned with N elements. ; YGRID: contains a two element array, [ystart, yspacing], ; defining the input grid in the Y direction. Do not ; specify both YGRID and YVALUES. ; YVALUES: if present, YVALUES(i) contains the Y location ; of Z(i,j). YVALUES must be dimensioned with N elements. ; ; Output grid description: ; GS: If present, GS must be a two-element vector [XS, YS], ; where XS is the horizontal spacing between grid points ; and YS is the vertical spacing. The default is based on ; the extents of X and Y. If the grid starts at X value ; Xmin and ends at Xmax, then the default horizontal ; spacing is (Xmax - Xmin)/(NX-1). YS is computed in the ; same way. The default grid size, if neither NX or NY ; are specified, is 26 by 26. ; BOUNDS: If present, BOUNDS must be a four element array containing ; the grid limits in X and Y of the output grid: ; [Xmin, Ymin, Xmax, Ymax]. If not specified, the grid ; limits are set to the extent of X and Y. ; NX: The output grid size in the X direction. NX need not ; be specified if the size can be inferred from GS and ; BOUNDS. The default value is 26. ; NY: The output grid size in the Y direction. See NX. ; ; OUTPUTS: ; This function returns a two dimensional floating point array ; containing the interpolated surface, sampled at the grid points. ; ; RESTRICTIONS: ; The accuracy of this function is limited by the single precision ; floating point accuracy of the machine. ; ; SAMPLE EXECUTION TIMES (measured on a Sun IPX) ; # of input points # of output points Seconds ; 10 676 1.1 ; 20 676 1.5 ; 40 676 2.6 ; 80 676 7.8 ; 10 1024 1.6 ; 10 4096 5.9 ; 10 16384 23 ; ; PROCEDURE: ; Ordinary kriging is used to fit the surface described by the ; data points X,Y, and Z. See: Isaaks and Srivastava, ; "An Introduction to Applied Geostatistics," Oxford University ; Press, 1989, Chapter 12. ; ; The parameters of the data model, the range, nugget, and ; sill, are highly dependent upon the degree and type of spatial ; variation of your data, and should be determined statistically. ; Experimentation, or preferrably rigorus analysis, is required. ; ; For N data points, a system of N+1 simultaneous ; equations are solved for the coefficients of the ; surface. For any interpolation point, the interpolated value ; is: ; F(x,y) = Sum( w(i) * C(x(i),y(i), x, y) ; ; Formulas used to model the variogram functions: ; d(i,j) = distance from point i to point j. ; V = variance of samples. ; C(i,j) = Covariance of sample i with sample j. ; C(x0,y0,x1,y1) = Covariance of point (x0,y0) with (x1,y1). ; ; Exponential covar: C(d) = C1 * EXP(-3*d/A) if d ne 0. ; = C1 + C0 if d eq 0. ; ; Spherical covar: C(d) = (1.0 - 1.5 * d/a + 0.5 * (d/a)^3) ; = C1 + C0 if d eq 0. ; = 0 if d > a. ; ; EXAMPLES: ; Example 1: Irregularly gridded cases ; Make a random set of points that lie on a gaussian: ; n = 15 ;# random points ; x = RANDOMU(seed, n) ; y = RANDOMU(seed, n) ; z = exp(-2 * ((x-.5)^2 + (y-.5)^2)) ;The gaussian ; ; get a 26 by 26 grid over the rectangle bounding x and y: ; e = [ 0.25, 0.0] ;Range and nugget are 0.25, and 0. ; ;(These numbers are dependent upon ; ;your data model.) ; r = krig2d(z, x, y, EXPON = e) ;Get the surface. ; ; Or: get a surface over the unit square, with spacing of 0.05: ; r = krig2d(z, x, y, EXPON=e, GS=[0.05, 0.05], BOUNDS=[0,0,1,1]) ; ; Or: get a 10 by 10 surface over the rectangle bounding x and y: ; r = krig2d(z, x, y, EXPON=e, NX=10, NY=10) ; ; Example 2: Regularly gridded cases ; s = [ 10., 0.2] ;Range and sill, data dependent. ; z = randomu(seed, 5, 6) ;Make some random data ; interpolate to a 26 x 26 grid: ; CONTOUR, krig2d(z, /REGULAR, SPHERICAL = s) ; ; MODIFICATION HISTORY: ; DMS, RSI, March, 1993. Written. ;- on_error, 2 s = size(z) ;Assume 2D nx = s[1] ny = s[2] reg = keyword_set(regular) or (n_params() eq 1) if n_elements(xgrid) eq 2 then begin x = findgen(nx) * xgrid[1] + xgrid[0] reg = 1 endif else if n_elements(xvalues) gt 0 then begin if n_elements(xvalues) ne nx then $ message,'Xvalues must have '+string(nx)+' elements.' x = xvalues reg = 1 endif if n_elements(ygrid) eq 2 then begin y = findgen(ny) * ygrid[1] + ygrid[0] reg = 1 endif else if n_elements(yvalues) gt 0 then begin if n_elements(yvalues) ne ny then $ message,'Yvalues must have '+string(ny)+' elements.' y = yvalues reg = 1 endif if reg then begin if s[0] ne 2 then message,'Z array must be 2D for regular grids' if n_elements(x) ne nx then x = findgen(nx) if n_elements(y) ne ny then y = findgen(ny) x = x # replicate(1., ny) ;Expand to full arrays. y = replicate(1.,nx) # y endif n = n_elements(x) if n ne n_elements(y) or n ne n_elements(z) then $ message,'x, y, and z must have same number of elements.' if keyword_set(ex) then begin ;Get model params t = ex fname = 'KRIG_EXPON' endif else if keyword_set(sp) then begin t = sp fname = 'KRIG_SPHERE' endif else MESSAGE,'Either EXPONENTIAL or SPHERICAL model must be selected.' if n_elements(t) eq 2 then begin ;Default value for variance? mz = total(z) / n ;Mean of z var = total((z - mz)^2)/n ;Variance of Z t = [t, var-t[1]] ;Default value for C1 endif m = n + 1 ;# of eqns to solve a = fltarr(m, m) for i=0, n-2 do for j=i,n-1 do begin ;Only upper diagonal elements d = (x[i]-x[j])^2 + (y[i]-y[j])^2 ;Distance squared a[i,j] = d & a[j,i] = d ;symmetric endfor a = call_function(fname, sqrt(a), t) ;Get coefficient matrix a[n,*] = 1.0 ;Fill edges a[*,n] = 1.0 a[n,n] = 0.0 ; c = invert(a) ;Solution using inverse ludcmp, a, indx, even_odd ;Solution using LU decomposition if n_elements(nx0) le 0 then nx0 = 26 ;Defaults for nx and ny if n_elements(ny0) le 0 then ny0 = 26 xmin = min(x, max = xmax) ;Make the grid... ymin = min(y, max = ymax) if n_elements(gs) lt 2 then $ gs = [(xmax-xmin)/(nx0-1.), (ymax-ymin)/(ny0-1.)] if n_elements(bounds) lt 4 then bounds = [xmin, ymin, xmax, ymax] nx = ceil((bounds[2]-bounds[0])/gs[0])+1 ;# of elements ny = ceil((bounds[3]-bounds[1])/gs[1])+1 d = fltarr(m) ;One extra for lagrange constranint r = fltarr(nx,ny,/nozero) ;Result for j=0,ny-1 do begin ;Each output point y0 = bounds[1] + gs[1] * j for i=0,nx-1 do begin x0 = bounds[0] + gs[0] * i d[0] = sqrt((x-x0)^2 + (y-y0)^2) ;distance d = call_function(fname, d, t) ;Get rhs d[n] = 1.0 ;lagrange constr lubksb, a, indx, d r[i,j] = total(d * z) endfor endfor return, r end