;$Id: ladfit.pro,v 1.9 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; LADFIT ; ; PURPOSE: ; This function fits the paired data {X(i), Y(i)} to the linear model, ; y = A + Bx, using a "robust" least absolute deviation method. The ; result is a two-element vector containing the model parameters, A ; and B. ; ; CATEGORY: ; Statistics. ; ; CALLING SEQUENCE: ; Result = LADFIT(X, Y) ; ; INPUTS: ; X: An n-element vector of type integer, float or double. ; ; Y: An n-element vector of type integer, float or double. ; ; KEYWORD PARAMETERS: ; ABSDEV: Use this keyword to specify a named variable which returns the ; mean absolute deviation for each data-point in the y-direction. ; ; DOUBLE: If set to a non-zero value, computations are done in double ; precision arithmetic. ; ; EXAMPLE: ; Define two n-element vectors of paired data. ; x = [-3.20, 4.49, -1.66, 0.64, -2.43, -0.89, -0.12, 1.41, $ ; 2.95, 2.18, 3.72, 5.26] ; y = [-7.14, -1.30, -4.26, -1.90, -6.19, -3.98, -2.87, -1.66, $ ; -0.78, -2.61, 0.31, 1.74] ; Compute the model parameters, A and B. ; result = ladfit(x, y, absdev = absdev) ; The result should be the two-element vector: ; [-3.15301, 0.930440] ; The keyword parameter should be returned as: ; absdev = 0.636851 ; ; REFERENCE: ; Numerical Recipes, The Art of Scientific Computing (Second Edition) ; Cambridge University Press ; ISBN 0-521-43108-5 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, September 1994 ; Modified: GGS, RSI, July 1995 ; Corrected an infinite loop condition that occured when ; the X input parameter contained mostly negative data. ; Modified: GGS, RSI, October 1996 ; If least-absolute-deviation convergence condition is not ; satisfied, the algorithm switches to a chi-squared model. ; Modified keyword checking and use of double precision. ; Modified: GGS, RSI, November 1996 ; Fixed an error in the computation of the median with ; even-length input data. See EVEN keyword to MEDIAN. ;- FUNCTION Sign, z, d RETURN, ABS(z) * d / ABS(d) END FUNCTION MDfunc, b, x, y, arr, aa, absdev, nX, Double = Double ON_ERROR, 2 eps = 1.0e-7 arr = y - b*x if nX MOD 2 eq 0 then $ ;X is of even length. ;j = nX / 2 ;Average Kth and K-1st medians. aa = MEDIAN(arr, /EVEN) $ else aa = MEDIAN(arr) sum = 0 absdev = 0 ;for k = 0L, nX-1 do begin ; d = y(k) - (b * x(k) + aa) ; absdev = absdev + abs(d) ; if y(k) ne 0 then d = d / abs(y(k)) ; if abs(d) gt eps then sum = sum + Sign(x(k), d) ;endfor d = y - (b * x + aa) absdev = TOTAL(abs(d), Double = Double) zeros = where(y ne 0) d = d[zeros] / abs(y[zeros]) zeros = where(abs(d) gt eps, nzeros) if nzeros ne 0 then $ sum = TOTAL(x[zeros]*Sign(REPLICATE(1.0, nzeros), d[zeros]), $ Double = Double) if Double eq 0 then RETURN, FLOAT(sum) else RETURN, sum END FUNCTION MDfunc2, x, y, nX, Double = Double ON_ERROR, 2 ss = nX + 0.0 sx = TOTAL(x, Double = Double) sy = TOTAL(y, Double = Double) t = x - sx/ss st2 = TOTAL(t^2, Double = Double) b = TOTAL(t * y, Double = Double) b = b / st2 a = (sy - sx * b) / ss sdeva = sqrt((1.0 + sx * sx / (ss * st2)) / ss) sdevb = sqrt(1.0 / st2) chisqr = TOTAL( (y - a - b * x)^2, Double = Double ) prob = 1.0 sdevdat = sqrt(chisqr / (nX-2)) sdeva = sdeva * sdevdat sdevb = sdevb * sdevdat sig_ab = [sdeva, sdevb] if Double eq 0 then RETURN, FLOAT([a, b]) else RETURN, [a, b] END FUNCTION LadFit, x, y, absdev = absdev, Double = Double ON_ERROR, 2 TypeX = SIZE(X) TypeY = SIZE(Y) nX = TypeX[TypeX[0]+2] nY = TypeY[TypeY[0]+2] if nX ne nY then $ MESSAGE, "X and Y must be vectors of equal length." ;If the DOUBLE keyword is not set then the internal precision and ;result are identical to the type of input. if N_ELEMENTS(Double) eq 0 then $ Double = (TypeX[TypeX[0]+1] eq 5 or TypeY[TypeY[0]+1] eq 5) sx = TOTAL(x, Double = Double) sy = TOTAL(y, Double = Double) sxy = TOTAL(x*y, Double = Double) sxx = TOTAL(x*x, Double = Double) del = nX * sxx - sx^2 aa = (sxx * sy - sx * sxy) / del bb = (nX * sxy - sx * sy) / del chisqr = TOTAL((y - (aa + bb*x))^2, Double = Double) sigb = sqrt(chisqr / del) b1 = bb f1 = MDfunc(b1, x, y, arr, aa, absdev, nX, Double = Double) if f1 eq 0 then RETURN, MDfunc2(x, y, nX, Double = Double) b2 = bb + Sign(3.0 * sigb, f1) f2 = MDfunc(b2, x, y, arr, aa, absdev, nX, Double = Double) while f1*f2 gt 0 do begin bb = 2.0 * b2 - b1 b1 = b2 f1 = f2 b2 = bb f2 = MDfunc(b2, x, y, arr, aa, absdev, nX, Double = Double) endwhile sigb = 0.01 * sigb while abs(b2-b1) gt sigb do begin bb = 0.5 * (b1 + b2) if bb eq b1 or bb eq b2 then begin absdev = absdev / nX if Double eq 0 then RETURN, FLOAT([aa, bb]) else RETURN, [aa, bb] endif else begin f = MDfunc(bb, x, y, arr, aa, absdev, nX, Double = Double) if f*f1 ge 0 then begin f1 = f b1 = bb endif else begin f2 = f b2 = bb endelse endelse endwhile absdev = absdev / nX if Double eq 0 then RETURN, FLOAT([aa, bb]) else RETURN, [aa, bb] END