;$Id: ranks.pro,v 1.6 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1994-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; RANKS ; ; PURPOSE: ; This function computes the magnitude-based ranks of a sample ; population X. Elements of identical magnitude "ties" are ranked ; according to the mean of the ranks that would otherwise be assigned. ; The result is a vector of ranks equal in length to X. ; ; CATEGORY: ; Statistics. ; ; CALLING SEQUENCE: ; Result = Ranks(X) ; ; INPUTS: ; X: An n-element vector of type integer, float or double. ; The elements of this vector must be in ascending order ; based on their magnitude. ; ; EXAMPLE: ; Define an n-element sample population. ; x = [-0.8, 0.1, -2.3, -0.6, 0.2, 1.1, -0.3, 0.6, -0.2, 1.1, -0.7, $ ; -0.2, 0.6, 0.4, -0.1, 1.1, -0.3, 0.3, -1.3, 1.1] ; ; Allocate a two-column, n-row array to store the results. ; array = fltarr(2, n_elements(x)) ; ; Sort the sample population and store in the 0th column of ARRAY. ; array[0, *] = x[sort(x)] ; ; Compute the ranks of the sorted sample population and store in the ; 1st column of ARRAY. ; array[1, *] = ranks[x[sort(x)]] ; ; Display the sorted sample population and corresponding ranks with a ; two-decimal format. ; print, array, format = '(2(5x, f5.2))' ; ; The result should be: ; -2.30 1.00 ; -1.30 2.00 ; -0.80 3.00 ; -0.70 4.00 ; -0.60 5.00 ; -0.30 6.50 ; -0.30 6.50 ; -0.20 8.50 ; -0.20 8.50 ; -0.10 10.00 ; 0.10 11.00 ; 0.20 12.00 ; 0.30 13.00 ; 0.40 14.00 ; 0.60 15.50 ; 0.60 15.50 ; 1.10 18.50 ; 1.10 18.50 ; 1.10 18.50 ; 1.10 18.50 ; ; REFERENCE: ; PROBABILITY and STATISTICS for ENGINEERS and SCIENTISTS (3rd edition) ; Ronald E. Walpole & Raymond H. Myers ; ISBN 0-02-424170-9 ; ; MODIFICATION HISTORY: ; Written by: GGS, RSI, November 1994 ;- function ranks, x on_error, 2 nx = n_elements(x) r_vec = [0.0, x] k = 1L while(k lt nx) do begin if(r_vec[k+1] ne r_vec[k]) then begin r_vec[k] = k k = k+1 endif else begin for kt = k+1, nx do $ if (r_vec[kt] ne r_vec[k]) then goto, midrank kt = nx + 1 midrank: rank = 0.5 * (k + kt - 1) r_vec[k:kt-1] = rank t = kt - k k = kt endelse endwhile if(k eq nx) then r_vec[nx] = nx return, r_vec[1:*] end