; $Id: recon3.pro,v 1.10 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1993-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ; ;+ ; NAME: ; RECON3 ; ; PURPOSE: ; This function can reconstruct a 3-dimensional data array from ; two or more images (or projections) of an object. For example, ; if you placed a dark object in front of a white background and ; then photographed it three times (each time rotating the object a ; known amount) then these three images could be used with RECON3 ; to approximate a 3-D volumetric representation of the object. ; RECON3 also works with translucent projections of an object. ; RECON3 returns a 3-D byte array. RECON3 uses the back-projection ; method. In medical imaging and other applications, a method ; known as "Filtered Backprojection" is often desired. This may ; be accomplished here by first filtering the images as desired, ; and then using the filtered images for the reconstruction. ; ; CATEGORY: ; Volume Reconstruction ; ; CALLING SEQUENCE: ; vol = RECON3(Images, Obj_Rot, Obj_Pos, Focal, Dist, $ ; Vol_Pos, Img_Ref, Img_Mag, Vol_Size) ; ; INPUTS: ; Images: The images to use to reconstruct the volume. Execution ; time increases linearly with more images. ; Data Type: 8-bit (byte) array with dimensions [x, y, n] ; where x is the horizontal image dimension, y is the vertical ; image dimension, and n is the number of images. ; ; Obj_Rot: The the amount the object is rotated to make it appear as ; it does in each image. The object is first rotated ; about the X axis, then about the Y axis, and finally ; about the Z axis (with the object's reference point at the ; origin. ; Data Type: [3, n] Float array where Obj_Rot[0, *] is the X ; rotation for each image, Obj_Rot[1, *] is the Y rotation, ; and Obj_Rot[2, *] is the Z rotation. ; ; Obj_Pos: The position of the the object's reference point RELATIVE to ; the camera lens. The camera lens is located at the ; coordinate origin and points in the negative Z direction ; (the view up vector points in the positive Y direction). ; Obj_Pos should be expressed in this coordinate system. ; The values for Obj_Pos, Focal, Dist, and Vol_Pos should all ; be expressed in the same units (mm, cm, m, in, ft, etc.). ; Data Type: [3, n] Float array where Obj_Pos[0, *] is the X ; position for each image, Obj_Pos[1, *] is the Y position, ; and Obj_Pos[2, *] is the Z position. All the values in ; Obj_Pos[2, *] should be less than zero. ; ; Focal: The focal length of the lens for each image. Focal may be ; set to zero to indicate a parallel image projection ; (infinite focal length). ; Data Type: Float array with n elements. ; ; Dist: The distance from the camera lens to the image plane (film) ; for each image. Dist should be greater than Focal. ; Data Type: Float array with n elements. ; ; Vol_Pos: The two opposite corners of a cube that surrounds the object. ; Vol_Pos should be expressed in the object's coordinate system ; RELATIVE to the object's reference point. ; Data Type: [3, 2] Float array where Vol_Pos[*, 0] specifies ; one corner and Vol_Pos[*, 1] specifies the opposite corner. ; ; Img_Ref: The pixel location at which the object's reference point ; appears in each of the images. ; Data Type: [2, n] Int or Float array where Img_Ref[0, *] is ; the X coordinate for each image and Img_Ref[1, *] is the Y ; coordinate. ; ; Img_Mag: The magnification factor for each image. This number is ; actually the length (in pixels) that a test object would ; appear in an image if it were N units long and N units ; distant from the camera lens. ; Data Type: [2, n] Int or float array where Img_Mag[0, *] is ; the X dimension (in pixels) of a test object for each image, ; and Img_Mag[1, *] is the Y dimension. All elements in ; Img_Mag should be greater than or equal to 1. ; ; Vol_Size: The size of the volume to return. The returned volume will ; be a 3-D byte array with dimensions equal to Vol_Size. ; Execution time (and resolution) increases exponentially with ; larger values for Vol_Size. ; Data Type: Int array with 3 elements where Vol_Size[0] ; specifies the X dimension of the volume, Vol_Size[1] specifies ; the Y dimension, and Vol_Size[2] specifies the Z dimension. ; ; KEYWORD PARAMETERS: ; CUBIC: If set, then cubic interpolation is used. The default is ; to use tri-linear interpolation, which is slightly faster. ; ; MISSING: The value for cells in the 3-D volume that do not map to ; any of the supplied images. The Missing value is passed ; to the IDL "INTERPOLATE" function. ; Data Type: Byte. ; Default : 0B ; ; MODE: If Mode is less than zero then each cell in the 3-D volume ; is the MINIMUM of the corresponding pixels in the images. ; If Mode is greater than zero then each cell in the 3-D volume ; is the MAXIMUM of the corresponding pixels in the images. ; If Mode is equal to zero then each cell in the 3-D volume ; is the AVERAGE of the corresponding pixels in the images. ; Mode should usually be (-1) when the images contain a bright ; object in front of a dark background. Mode should usually ; be (+1) when the images contain a dark object in front of a ; light background. AVERAGE mode requires more memory since ; the volume array must temporarily be kept as an INT array ; instead of a BYTE array. ; Data Type: Int ; Default : 0 (average cells) ; ; OUTPUTS: ; RECON3 returns a 3-D byte array containing the reconstructed object. ; ; If the images contain low (dark) values where the object is and high ; (bright) values where the object isn't, then Mode should be set to (+1). ; If the above is true then the returned volume will have low values ; where the object is, and high values where the object isn't. ; ; If the images contain high (bright) values where the object is and low ; (dark) values where the object isn't, then Mode should be set to (-1). ; If the above is true then the returned volume will have high values ; where the object is, and low values where the object isn't. ; ; RESTRICTIONS: ; In general, the object must be CONVEX for a good reconstruction to be ; possible. Concave regions are not easily reconstructed. ; An empty coffee cup, for example, would be reconstructed as if it ; were full. ; ; The images should show strong light/dark contrast between the object ; and the background. ; ; The more images the better. Images from many different angles will ; improve the quality of the reconstruction. It is also important to ; supply images that are parallel and perpendicular to any axes of ; symmetry. Using the coffee cup as an example, at least one image ; should be looking through the opening in the handle. ; ; Telephoto images are also better for reconstruction purposes than ; wide angle images. ; ; PROCEDURE: ; A 4x4 transformation matrix is created for each image based upon the ; parameters Obj_Rot, Obj_Pos, Focal, Dist, and Img_Ref. Each cell in ; the volume is assigned a 3-D coordinate based upon the parameters ; Vol_Pos and Vol_Size. These coordinates are multiplied by the ; transformation matricies to produce x,y image coordinates. Each cell ; in the volume is assigned a value that is the AVERAGE, MINIMUM, or ; MAXIMUM of the image values at the x,y position (depending on Mode). ; ; EXAMPLE: ; ------------------------------------------------------------------------------ ; ; Assumptions for this example : ; ; The object's major axis is parallel to the Z axis. ; ; The object's reference point is at its center. ; ; The camera lens is pointed directly at this reference point. ; ; The reference point is 5000 mm in front of the camera lens. ; ; The focal length of the camera lens is 200 mm. ; ; ; If the camera is focused on the reference point, then the ; ; distance from the lens to the camera's image plane must be ; ; dist = (d * f) / (d - f) = ; ; (5000 * 200) / (5000 - 200) = (1000000 / 4800) = 208.333 mm ; ; ; The object is roughly 600 mm wide and 600 mm high. ; ; The reference point appears in the exact center of each image. ; ; ; If the object is 600 mm high and 5000 mm distant from the camera ; ; lens, then the object image height must be ; ; hi = (h * f) / (d - f) = ; ; (600 * 200) / (5000 - 200) = (120000 / 4800) = 25.0 mm ; ; The object image appears 200 pixels high so the final magnification ; ; factor is ; ; img_mag = (200 / 25) = 8.0 ; ; ; imgy = 256 ; frames = 3 ; ; images = Bytarr(imgx, imgy, frames, /Nozero) ; obj_rot = Fltarr(3, frames) ; obj_pos = Fltarr(3, frames) ; focal = Fltarr(frames) ; dist = Fltarr(frames) ; vol_pos = Fltarr(3, 2) ; img_ref = Fltarr(2, frames) ; img_mag = Fltarr(2, frames) ; ; vol_size = [40, 40, 40] ; ; ; The object is 5000 mm directly in front of the camera. ; obj_pos[0, *] = 0.0 ; obj_pos[1, *] = 0.0 ; obj_pos[2, *] = -5000.0 ; ; ; The focal length of the lens is constant for all the images. ; focal[*] = 200.0 ; ; ; The distance from the lens to the image plane is also constant. ; dist[*] = 208.333 ; ; ; The cube surrounding the object is 600 mm X 600 mm. ; vol_pos[*, 0] = [-300.0, -300.0, -300.0] ; vol_pos[*, 1] = [ 300.0, 300.0, 300.0] ; ; ; The image reference point appears at the center of all the images. ; img_ref[0, *] = imgx / 2 ; img_ref[1, *] = imgy / 2 ; ; ; The image magnification factor is constant for all images. ; ; (The images haven't been cropped or resized). ; img_mag[*, *] = 8.0 ; ; ; Only the object rotation changes from one image to the next. ; ; Note that the object is rotated about the X axis first, then Y, ; ; and then Z. ; ; ; Create some fake images for this example. ; images[30:160, 20:230, 0] = 255 ; images[110:180, 160:180, 0] = 180 ; obj_rot[*, 0] = [-90.0, 0.0, 0.0] ; ; images[70:140, 100:130, 1] = 255 ; obj_rot[*, 1] = [-70.0, 75.0, 0.0] ; ; images[10:140, 70:170, 2] = 255 ; images[80:90, 170:240, 2] = 150 ; obj_rot[*, 1] = [-130.0, 215.0, 0.0] ; ; ; Reconstruct the volume. ; vol = RECON3(images, obj_rot, obj_pos, focal, dist, vol_pos, img_ref, $ ; img_mag, vol_size, Missing=255B, Mode=(-1)) ; ------------------------------------------------------------------------------ ; ; MODIFICATION HISTORY: ; Written by: Daniel Carr Thu Feb 4 02:54:29 MST 1993 ; KDB - 23 Dec., 1993 - Variable dist had a conflict with Userlib ; function DIST and could cause compile errors. ; Renamed variable dist to distance. ; Modified by: Daniel Carr Mon Nov 21 14:21:57 MST 1994 ; Improved performance and added CUBIC keyword. ; Modified by: Daniel Carr Tue Nov 22 12:18:15 MST 1994 ; Fixed bug which affected small focal length images. ; Improved performance again. ;- FUNCTION RECON3, images, obj_rot, obj_pos, focal, distance, vol_pos, img_ref, $ img_mag, vol_size, Missing=missing, Mode=mode, Cubic=cubic ; *** Check inputs. sz_images = Size(images) IF (sz_images[0] NE 3) THEN $ Message, 'Image array must have 3 dimensions.' frames = sz_images[3] ysize = sz_images[2] xsize = sz_images[1] sz_obj_rot = Size(obj_rot) IF (sz_obj_rot[0] NE 2) THEN $ Message, 'Obj_Rot must be a [3, n] array.' IF (sz_obj_rot[1] NE 3) THEN $ Message, 'Obj_Rot must be a [3, n] array.' IF (sz_obj_rot[2] NE frames) THEN $ Message, 'Obj_Rot must be a [3, n] array, where n is the number of images.' obj_rot1 = Float(obj_rot) sz_obj_pos = Size(obj_pos) IF (sz_obj_pos[0] NE 2) THEN $ Message, 'Obj_Pos must be a [3, n] array.' IF (sz_obj_pos[1] NE 3) THEN $ Message, 'Obj_Pos must be a [3, n] array.' IF (sz_obj_pos[2] NE frames) THEN $ Message, 'Obj_Pos must be a [3, n] array, where n is the number of images.' ind = Where(obj_pos[2, *] GE 0.0) IF (ind[0] GE 0) THEN $ Message, 'The object Z position must be < 0 for all images.' obj_pos1 = Float(obj_pos) IF (N_Elements(focal) NE frames) THEN $ Message, $ 'Focal must contain the same number of elements as there are images.' ind = Where(focal[*] LE 0.0) IF (ind[0] GE 0) THEN $ Message, 'Focal must be > 0 for all images.' focal1 = Float(focal[*]) IF (N_Elements(distance) NE frames) THEN $ Message, 'Len must contain the same number of elements as Focal.' ind = Where(distance[*] LE focal[*]) IF (ind[0] GE 0) THEN $ Message, 'Len must be greater than Focal for all images.' dist1 = Float(distance[*]) sz_vol_pos = Size(vol_pos) IF (sz_vol_pos[0] NE 2) THEN $ Message, 'Vol_Pos must be a [3, 2] array.' IF (sz_vol_pos[1] NE 3) THEN $ Message, 'Vol_Pos must be a [3, 2] array.' IF (sz_vol_pos[2] NE 2) THEN $ Message, 'Vol_Pos must be a [3, 2] array.' vol_pos1 = Float(vol_pos) IF (vol_pos[0, 0] EQ vol_pos[0, 1]) THEN $ Message, 'Vol_Pos contains invalid X coordinates.' IF (vol_pos[1, 0] EQ vol_pos[1, 1]) THEN $ Message, 'Vol_Pos contains invalid Y coordinates.' IF (vol_pos[2, 0] EQ vol_pos[2, 1]) THEN $ Message, 'Vol_Pos contains invalid Z coordinates.' vpx1 = vol_pos[0, 0] < vol_pos[0, 1] vpy1 = vol_pos[1, 0] < vol_pos[1, 1] vpz1 = vol_pos[2, 0] < vol_pos[2, 1] vpx2 = vol_pos[0, 0] > vol_pos[0, 1] vpy2 = vol_pos[1, 0] > vol_pos[1, 1] vpz2 = vol_pos[2, 0] > vol_pos[2, 1] sz_img_ref = Size(img_ref) IF (sz_img_ref[0] NE 2) THEN $ Message, 'Img_Ref must be a [2, n] array.' IF (sz_img_ref[1] NE 2) THEN $ Message, 'Img_Ref must be a [2, n] array.' IF (sz_img_ref[2] NE frames) THEN $ Message, 'Img_Ref must be a [2, n] array, where n is the number of images.' img_ref1 = Float(img_ref) sz_img_mag = Size(img_mag) IF (sz_img_mag[0] NE 2) THEN $ Message, 'Img_Mag must be a [2, n] array.' IF (sz_img_mag[1] NE 2) THEN $ Message, 'Img_Mag must be a [2, n] array.' IF (sz_img_mag[2] NE frames) THEN $ Message, 'Img_Mag must be a [2, n] array, where n is the number of images.' ind = Where(img_mag[*] LT 1) IF (ind[0] GE 0L) THEN $ Message, 'All elements in Img_Mag must be >= 1.' img_mag1 = Float(img_mag) IF (N_Elements(vol_size) NE 3) THEN $ Message, 'Vol_size must contain 3 elements.' vol_size1 = Long(Abs(vol_size[*])) ; *** Check keywords. miss = 0B IF (N_Elements(missing) GT 0L) THEN miss = Byte(missing[0]) eval_mode = 0 IF (N_Elements(mode) GT 0L) THEN eval_mode = Fix(mode[0]) ; *** Set up variables. vx = vol_size1[0] vy = vol_size1[1] vz = vol_size1[2] vxm1 = vx - 1 vym1 = vy - 1 vzm1 = vz - 1 ; *** Cell coordinates. rx = ((vpx2 - vpx1) * Findgen(vx) / Float(vxm1)) + vpx1 ry = ((vpy2 - vpy1) * Findgen(vy) / Float(vym1)) + vpy1 rz = ((vpz2 - vpz1) * Findgen(vz) / Float(vzm1)) + vpz1 xplane = Reform((Temporary(rx) # Replicate(1.0, vy)), (vx * vy)) yplane = Reform((Replicate(1.0, vx) # Temporary(ry)), (vx * vy)) coords = [[Temporary(xplane)], [Temporary(yplane)], $ [Fltarr((vx * vy), /Nozero)], [Replicate(1.0, (vx * vy))]] ; *** Save current view matrix. save_t3d = !P.T ; *** Create the volume. IF (eval_mode GT 0) THEN vol = Bytarr(vx, vy, vz) IF (eval_mode EQ 0) THEN vol = Intarr(vx, vy, vz) IF (eval_mode LT 0) THEN vol = Replicate(255B, vx, vy, vz) FOR j=0, (frames-1) DO BEGIN ; *** Set up transform. T3d, /Reset T3d, Rotate=[obj_rot1[0, j], 0.0, 0.0] T3d, Rotate=[0.0, obj_rot1[1, j], 0.0] T3d, Rotate=[0.0, 0.0, obj_rot1[2, j]] T3d, Translate=obj_pos1[*, j] IF (focal1[j] GT 0.0) THEN BEGIN T3d, Translate=[0.0, 0.0, -dist1[j]] T3d, Perspective=$ ((focal1[j] / obj_pos1[2, j]) * (obj_pos1[2, j] - dist1[j])) ENDIF T3d, Scale=[img_mag1[0, j], img_mag1[1, j], 1.0] T3d, Translate=[img_ref1[0, j], img_ref1[1, j], 0.0] ; *** Fill in the volume one plane at a time. FOR i=0, vzm1 DO BEGIN coords[0, 2] = Replicate(rz[i], (vx * vy)) plane_index = coords # !P.T vol_x = plane_index[*, 0] / plane_index[*, 3] vol_y = plane_index[*, 1] / plane_index[*, 3] IF (eval_mode LT 0) THEN $ vol[0, 0, i] = vol[*, *, i] < $ Interpolate(images[*, *, j], vol_x, vol_y, Missing=miss, $ Cubic=Keyword_Set(cubic)) IF (eval_mode GT 0) THEN $ vol[0, 0, i] = vol[*, *, i] > $ Interpolate(images[*, *, j], vol_x, vol_y, Missing=miss, $ Cubic=Keyword_Set(cubic)) IF (eval_mode EQ 0) THEN $ vol[0, 0, i] = vol[*, *, i] + $ Fix(Interpolate(images[*, *, j], vol_x, vol_y, Missing=miss, $ Cubic=Keyword_Set(cubic))) ENDFOR Print, 'Completed image ' + String(j+1) ENDFOR IF (eval_mode EQ 0) THEN vol = Byte(vol / frames) ; *** Restore view matrix. !P.T = save_t3d RETURN, vol END