; $Id: regress.pro,v 1.7 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1982-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. FUNCTION REGRESS,X,Y,Weights,YFIT,Const,SIGMA,FTEST,R,RMUL,CHISQ,STATUS, $ RELATIVE_weight=relative_weight ;+ ; NAME: ; REGRESS ; ; PURPOSE: ; Perform a multiple linear regression fit. ; ; REGRESS fits the function: ; Y[i] = Const + A[0]*X[0,i] + A[1]*X[1,i] + ... + ; A[Nterms-1]*X[Nterms-1,i] ; ; CATEGORY: ; G2 - Correlation and regression analysis. ; ; CALLING SEQUENCE: ; Result = REGRESS(X, Y, Weights, Yfit, Const, Sigma, Ftest, R, Rmul, Chisq) ; ; INPUTS: ; X: The array of independent variable data. X must ; be dimensioned as an array of Nterms by Npoints, where ; there are Nterms coefficients (independent variables) to be ; found and Npoints of samples. ; ; Y: The vector of dependent variable points. Y must have Npoints ; elements. ; ; Weights: The vector of weights for each equation. Weights must be a vector ; of Npoints elements. For instrumental (Gaussian) weighting, ; W[i] = 1/standard_deviation(Y[i])^2. For statistical (Poisson) ; weighting, w[i] = 1./Y[i]. For no weighting, set w[i]=1, ; and also set the RELATIVE_WEIGHT keyword. ; ; OUTPUTS: ; REGRESS returns a column vector of coefficients that has Nterms ; elements. ; ; OPTIONAL OUTPUT PARAMETERS: ; Yfit: Vector of calculated values of Y with Npoints elements. ; ; Const: Constant term. (A0) ; ; Sigma: Vector of standard deviations for coefficients. ; ; Ftest: The value of F for test of fit. ; ; Rmul: The multiple linear correlation coefficient. ; ; R: Vector of linear correlation coefficients. ; ; Rmul: The multiple linear correlation coefficient. ; ; Chisq: Reduced, weighted chi squared. ; ; Status: A named variable to receive the status of the INVERT ; (array inversion) computation. A value of 0 indicates ; a successful computation. A value of 1 indicates the ; inversion is invalid due to a singular array. A value ; of 2 indicates the possibility of an inaccurate result ; due to the use of a small pivot element. ; ; KEYWORDS: ; RELATIVE_WEIGHT: If this keyword is set, the input weights ; (W vector) are assumed to be relative values, and not based ; on known uncertainties in the Y vector. Set this keyword in ; the case of no weighting, W[*] = 1. ; ; PROCEDURE: ; Adapted from the program REGRES, Page 172, ; Bevington, Data Reduction and Error Analysis for the ; Physical Sciences, 1969. ; ; MODIFICATION HISTORY: ; Written, DMS, RSI, September, 1982. ; Added RELATIVE_WEIGHT keyword W. Landsman August 1991 ; Fixed bug in invert Bobby Candey 1991 April 22 ; Added STATUS argument. GGS, RSI, August 1996 ;- ; On_error,2 ;Return to caller if an error occurs SY = SIZE(Y) ;Get dimensions of x and y. SX = SIZE(X) IF (N_ELEMENTS(Weights) NE SY[1]) OR (SX[0] NE 2) OR (SY[1] NE SX[2]) THEN $ message, 'Incompatible arrays.' ; NTERM = SX[1] ;# OF TERMS NPTS = SY[1] ;# OF OBSERVATIONS ; SW = TOTAL(Weights) ;SUM OF WEIGHTS YMEAN = TOTAL(Y*Weights)/SW ;Y MEAN XMEAN = (X * (REPLICATE(1.,NTERM) # Weights)) # REPLICATE(1./SW,NPTS) WMEAN = SW/NPTS WW = Weights/WMEAN ; NFREE = NPTS-1 ;DEGS OF FREEDOM SIGMAY = SQRT(TOTAL(WW * (Y-YMEAN)^2)/NFREE) ;Weights*(Y(I)-YMEAN) XX = X- XMEAN # REPLICATE(1.,NPTS) ;X(J,I) - XMEAN(I) WX = REPLICATE(1.,NTERM) # WW * XX ;Weights(I)*(X(J,I)-XMEAN(I)) SIGMAX = SQRT( XX*WX # REPLICATE(1./NFREE,NPTS)) ;Weights(I)*(X(J,I)-XM)*(X(K,I)-XM) R = WX #(Y - YMEAN) / (SIGMAX * SIGMAY * NFREE) ARRAY = (WX # TRANSPOSE(XX))/(NFREE * SIGMAX #SIGMAX) IF (SX[1] EQ 1) THEN ARRAY = 1 / ARRAY ELSE begin ARRAY = INVERT(Array, status) if status eq 1L then MESSAGE, "Inversion Failed due to singular array." endelse A = (R # ARRAY)*(SIGMAY/SIGMAX) ;GET COEFFICIENTS YFIT = A # X ;COMPUTE FIT Const = YMEAN - TOTAL(A*XMEAN) ;CONSTANT TERM YFIT = YFIT + Const ;ADD IT IN FREEN = NPTS-NTERM-1 > 1 ;DEGS OF FREEDOM, AT LEAST 1. CHISQ = TOTAL(WW*(Y-YFIT)^2)*WMEAN/FREEN ;WEIGHTED CHI SQUARED ; ; If all the weights are 1 then ; chisq = variance ; IF KEYWORD_SET(relative_weight) then varnce = chisq $ else varnce = 1./wmean sigma = sqrt(array[indgen(nterm)*(nterm+1)]*varnce/(nfree*sigmax^2)) ;Error term RMUL = TOTAL(A*R*SIGMAX/SIGMAY) ;MULTIPLE LIN REG COEFF IF RMUL LT 1. THEN FTEST = RMUL/NTERM / ((1.-RMUL)/FREEN) ELSE FTEST=1.E6 RMUL = SQRT(RMUL) RETURN,A END