; $Id: rot.pro,v 1.5 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1982-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;Rotate and magnify an image FUNCTION ROT,A,ANGLE,MAG,X0,y0, INTERP = interp, MISSING = missing, $ PIVOT = pivot, CUBIC = cubic ;+ ; NAME: ; ROT ; ; PURPOSE: ; Rotate, magnify or demagnify, and/or translate an image. ; ; CATEGORY: ; Z3 - Image processing, geometric transforms. ; ; CALLING SEQUENCE: ; Result = ROT(A, Angle, [Mag, X0, Y0], MISSING = missing, ; INTERP = Interp, CUBIC = Cubic) ; ; INPUTS: ; A: The image array to be rotated. This array may be of any type, ; but it must have two dimensions. ; ; ANGLE: Angle of rotation in degrees CLOCKWISE. (Why?, ; because of an error in the old ROT.) ; ; OPTIONAL INPUT PARAMETERS: ; MAG: Magnification/demagnification factor. A value of 1.0 = no ; change, > 1 is magnification and < 1 is demagnification. ; ; X0: X subscript for the center of rotation. If omitted, X0 equals ; the number of columns in the image divided by 2. ; ; Y0: Y subscript for the center of rotation. If omitted, y0 equals ; the number of rows in the image divided by 2. ; ; KEYWORDS: ; INTERP: Set this keyword for bilinear interpolation. If this keyword ; is set to 0 or omitted, nearest neighbor sampling is used. ; Note that setting this keyword is the same as using the ; ROT_INT User Library function. This change (and others) ; essentially makes ROT_INT obsolete. ; ; CUBIC: If specified and non-zero, "Cubic convolution" ; interpolation is used. This is a more ; accurate, but more time-consuming, form of interpolation. ; CUBIC has no effect when used with 3 dimensional arrays. ; If this parameter is negative and non-zero, it specifies the ; value of the cubic interpolation parameter as described ; in the INTERPOLATE function. Valid ranges are -1 <= Cubic < 0. ; Positive non-zero values of CUBIC (e.g. specifying /CUBIC) ; produce the default value of the interpolation parameter ; which is -1.0. ; ; MISSING: The data value to substitute for pixels in the output image ; that map outside the input image. ; ; PIVOT: Setting this keyword causes the image to pivot around the point ; X0, Y0, so that this point maps into the same point in the ; output image. If this keyword is set to 0 or omitted, then the ; point X0, Y0 in the input image is mapped into the center of ; the output image. ; ; OUTPUTS: ; ROT returns a rotated, magnified, and translated version of the ; input image. Note that the dimensions of the output image are ; always the same as those of the input image. ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; None. ; ; RESTRICTIONS: ; None. ; ; PROCEDURE: ; The POLY_2D function is used to translate, scale, and ; rotate the original image. ; ; EXAMPLE: ; Create and display an image. Then display a rotated and magnified ; version. Create and display the image by entering: ; ; A = BYTSCL(DIST(256)) ; TV, A ; ; Rotate the image 33 degrees and magnify it 1.5 times. Use bilinear ; interpolation to make the image look nice. Enter: ; ; B = ROT(A, 33, 1.5, /INTERP) ; TV, B ; ; MODIFICATION HISTORY: ; June, 1982. Written by DMS, RSI. ; ; Feb, 1986. Modified by Mike Snyder, ES&T Labs, 3M Company. ; Adjusted things so that rotation is exactly on the ; designated center. ; ; October, 1986. Modified by DMS to use the POLY_2D function. ; ; Aug, 1988. Added INTERP keyword. ; Dec, 1992. Added PIVOT keyword, William Thompson, NASA/GSFC. ; Nov, 1993. Added CUBIC keyword, DMS/RSI. ;- ; ; on_error,2 ;Return to caller if error B = FLOAT(SIZE(A)) ;Get dimensions IF N_PARAMS(0) LT 5 THEN BEGIN X0 = (B[1]-1)/2. ;Center of rotation in X. Y0 = (B[2]-1)/2. ; and in Y. IF N_PARAMS(0) LT 3 THEN MAG = 1. ;Mag specified? ENDIF ; IF KEYWORD_SET(PIVOT) THEN BEGIN XC = X0 YC = Y0 END ELSE BEGIN xc = (b[1]-1)/2. ;center of output image. yc = (b[2]-1)/2. ENDELSE theta = -angle/!radeg ;angle in degrees CLOCKWISE. c = cos(theta)*mag ;cos theta * mag s = sin(theta)*mag ; kx = -xc+c*x0-s*y0 ;useful constants. ky = -yc+s*x0+c*y0 kk = 1./(1.+s^2/c^2) ; cx = kk* [s/c^2*ky+kx/c,s/c^2,1/c,0.] ;x coeff... cy = kk * [-s/c^2*kx+ky/c,1/c,-s/c^2,0.] ;y coeff. i = 0 ;assume no interpolation if keyword_set(interp) then i=1 ;Bilinear if n_elements(cubic) eq 0 then cubic = 0 if n_elements(missing) eq 0 then $ return,poly_2d(a,cx,cy, i, CUBIC=cubic) $ else return, poly_2d(a,cx,cy, i, MISSING = missing, CUBIC=cubic) END