; $Id: scale3.pro,v 1.3 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1990-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. pro scale3,ax=ax, az=az, xrange=xr, yrange=yr, zrange=zr ;+ ; NAME: ; SCALE3 ; ; PURPOSE: ; Set up transformation and scaling for basic 3D viewing. ; ; This procedure is similar to SURFR and SCALE3D, except that the ; data ranges must be specified and the scaling does not vary with ; rotation. ; ; CATEGORY: ; Graphics, 3D. ; ; CALLING SEQUENCE: ; SCALE3, XRANGE = xr, YRANGE = yr, ZRANGE = zr [, AX = ax] [, AZ = az] ; ; INPUTS: ; No plain parameters. ; ; KEYWORD PARAMETERS: ; XRANGE: Two-element vector containing the minimum and maximum X values. ; If omitted, the X-axis scaling remains unchanged. ; ; YRANGE: Two-element vector containing the minimum and maximum Y values. ; If omitted, the Y-axis scaling remains unchanged. ; ; ZRANGE: Two-element vector containing the minimum and maximum Z values. ; If omitted, the Z-axis scaling remains unchanged. ; ; AX: Angle of rotation about the X axis. The default is 30 degrees. ; ; AZ: Angle of rotation about the Z axis. The default is 30 degrees. ; ; OUTPUTS: ; No explicit outputs. Results are stored in the system variables ; !P.T, !X.S, !Y.S, and !Z.S. ; ; COMMON BLOCKS: ; None. ; ; SIDE EFFECTS: ; The 4 by 4 matrix !P.T (the 3D-transformation system variable), ; receives the homogeneous transformation matrix generated by this ; procedure. ; ; The axis scaling variables, !X.S, !Y.S, and !Z.S are set ; from the data ranges. ; ; RESTRICTIONS: ; Axonometric projections only. ; ; PROCEDURE: ; Set the axis scaling variables from the supplied ranges, then: ; ; 1) Translate the unit cube so that the center (.5,.5,.5) is moved ; to the origin. ; ; 2) Scale by 1/SQRT(3) so that the corners do not protrude. ; ; 3) Rotate -90 degrees about the X axis to make the +Z ; axis of the data the +Y axis of the display. The +Y data axis ; extends from the front of the display to the rear. ; ; 4) Rotate about the Y axis AZ degrees. This rotates the ; result counterclockwise as seen from above the page. ; ; 5) Then it rotates about the X axis AX degrees, tilting the data ; towards the viewer. ; ; 6) Translate back to the (0,1) cube. ; ; This procedure may be easily modified to affect different rotations ; transformations. ; ; EXAMPLE: ; Set up a 3D transformation where the data range is 0 to 20 for each ; of the 3 axes and the viewing area is rotated 20 degrees about the ; X axis and 55 degrees about the Z axis. Enter: ; ; SCALE3, XRANGE=[0, 20], YRANGE=[0, 20], ZRANGE=[0, 20], AX=20, AZ=55 ; ; MODIFICATION HISTORY: ; DMS, June, 1991. ;- on_error,2 ;Return to caller if an error occurs if n_elements(ax) eq 0 then ax=30 ;Supply defaults if n_elements(az) eq 0 then az=30 if n_elements(xr) ge 2 then !x.s = [ -xr[0], 1.] / (xr[1]-xr[0]) if n_elements(yr) ge 2 then !y.s = [ -yr[0], 1.] / (yr[1]-yr[0]) if n_elements(zr) ge 2 then !z.s = [ -zr[0], 1.] / (zr[1]-zr[0]) ;Translate to center about origin, then scale down by 1/sqrt(3) ;so that the corners don't stick out. t3d, /RESET, TRANSLATE=[-.5,-.5,-.5], SCALE=replicate(1./sqrt(3),3) t3d, ROTATE = [-90,az,0] ;rotate so +Z axis is now +Y t3d, ROTATE = [ax,0,0] t3d, TRANSLATE = [.5, .5, .5] ;& back to 0,1 cube end