; $Id: sfit.pro,v 1.4 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1993-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. function sfit, z, degree, kx=kx ;+ ; NAME: ; SFIT ; ; PURPOSE: ; This function determines a polynomial fit to a surface. ; ; CATEGORY: ; Curve and surface fitting. ; ; CALLING SEQUENCE: ; Result = SFIT(Data, Degree) ; ; INPUTS: ; Data: The two-dimensional array of data to fit. The sizes of ; the dimensions may be unequal. ; ; Degree: The maximum degree of fit (in one dimension). ; ; OUTPUT: ; This function returns a fitted array. ; ; OUTPUT KEYWORDS: ; Kx: The array of coefficients for a polynomial function ; of x and y to fit data. ; This parameter is returned as a (Degree+1) by (Degree+1) ; element array. ; ; PROCEDURE: ; Fit a 2D array Z as a polynomial function of x and y. ; The function fitted is: ; F(x,y) = Sum over i and j of kx(j,i) * x^i * y^j ; where kx is returned as a keyword. ; ; MODIFICATION HISTORY: ; July, 1993, DMS Initial creation ; ;- on_error, 2 s = size(z) nx = s[1] ny = s[2] m = nx * ny ;# of points to fit n2=(degree+1)^2 ;# of coefficients to solve x = findgen(nx) # replicate(1., ny) ;X values at each point y = replicate(1.,nx) # findgen(ny) ut = dblarr(n2, m, /nozero) for i=0, degree do for j=0,degree do $ ut[i*(degree+1) + j, 0] = reform(x^i * y^j, 1, m) kk = invert(ut # transpose(ut)) # ut kx = fltarr(degree+1, degree+1) + float(kk # reform(z, m, 1)) fit = reform(reform(kx,n2) # ut, nx, ny) return, fit end