; $Id: voronoi.pro,v 1.7 1997/01/15 03:11:50 ali Exp $ ; ; Copyright (c) 1992-1997, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. function isright, x0, y0, x1, y1, x2, y2 ; return 1 if Pnt0 is to right of Pnt1-> Pnt2 ; return 0 if it is on the line. ; return -1 if Pnt0 is to the left of Pnt1 -> Pnt2 z = (x0-x1) * (y2-y1) - (y0-y1) * (x2-x1) if z gt 0.0 then return, 1 if z lt 0.0 then return, -1 return, 0 end PRO voronoi_get_intersect, rect, x0, y0, dx, dy, xi, yi, nedge ; Return the closest intersection of the line thru (x0, y0), with ; slope (dx / dy), and the rectangle rect. The intersection must ; be in the "positive" direction. ; Set (xi, yi) to the intersection point, and ; nedge to the edge index. Edge 0 is the bottom, going CCW. ; nedge = -1 tmin = 0. if dy ne 0.0 then begin t = (rect[1] - y0) / dy ;Bottom = edge 0? if t ge 0.0 then begin tmin = t nedge = 0 yi = rect[1] ;Intersection with bottom xi = x0 + t * dx endif t = (rect[3] - y0) / dy ;Top edge = 2 if t ge 0.0 then $ if (nedge lt 0) or (t lt tmin) then begin tmin = t nedge = 2 yi = rect[3] xi = x0 + t * dx endif endif ;dy ne 0 if dx ne 0.0 then begin ;Check sides? t = (rect[0] - x0) / dx ;Left edge = 3 if t ge 0.0 then $ if (nedge lt 0) or (t lt tmin) then begin tmin = t nedge = 3 xi = rect[0] yi = y0 + t * dy endif t = (rect[2] - x0) / dx ;Right edge = 1 if t ge 0.0 then $ if (nedge lt 0) or (t lt tmin) then begin tmin = t nedge = 1 xi = rect[2] yi = y0 + t * dy endif endif ;Dx ne 0 end pro VORONOI_SHOW, n ;Illustrate using and drawing Voronoi polygons ; This procedure generates N random points (default = 12). ; and then draws the voronoi polygons, with the points and ; delaunay triangulation overlaid. if n_elements(n) le 0 then n = 12 ;Make the random points seed = 1211567L x = randomu(seed, n) y = randomu(seed, n) triangulate, x, y, tr, CONN=c ;Triangulate them plot,x,y,/psym, xrange=[-.5,1.5], yrange=[-.5,1.5] tek_color ;Discrete color tables. range = 0 ;Init bounding rectangle for i=0, n-1 do begin ;Each VORONOI region for each point voronoi, x, y, i, c, xp, yp, range ;Get the ith polygon xp = xp > (-10) < 10 ;Clip to reasonable space yp = yp > (-10) < 10 polyfill, xp, yp, color = (i mod 13) + 2 ;Show it endfor oplot,x,y,/psym, color=1 ;Show points & triangulation for i=0, n_elements(tr)/3-1 do begin ;The triangles t = [tr(*,i),tr(0,i)] ;Subscripts of triangle & back to 0 plots,x(t), y(t) endfor end PRO voronoi, x, y, i0, c, xp, yp, rect ; Copyright (c) 1992, Research Systems, Inc. All rights reserved. ; Unauthorized reproduction prohibited. ;+ ; NAME: ; VORONOI ; ; PURPOSE: ; This procedure computes the Voronoi polygon of a point within ; an irregular grid of points, given the Delaunay triangulation. ; The Voronoi polygon of a point contains the region closer to ; that point than to any other point. ; ; CATEGORY: ; Gridding. ; ; CALLING SEQUENCE: ; VORONOI, X, Y, I0, C, Xp, Yp, Rect ; ; INPUTS: ; X: An array containing the X locations of the points. ; Y: An array containing the Y locations of the points. ; I0: Index of the point of which to obtain the Voronoi polygon. ; C: A connectivity list from the Delaunay triangulation. ; This list is produced with the CONNECTIVITY keyword ; of the TRIANGULATE procedure. ; Rect the bounding rectangle: [Xmin, Ymin, Xmax, Ymax]. ; Because the Voronoi polygon (VP) for points on the convex hull ; extends to infinity, a clipping rectangle must be supplied to ; close the polygon. This rectangle has no effect on the VP of ; interior points. If this rectangle does not enclose all the ; Voronoi vertices, the results will be incorrect. If this ; parameter, which must be a named variable, is undefined or ; set to a scalar value, it will be calculated. ; ; OUTPUTS: ; Xp, Yp: The vertices of voroni polygon, VP. ; ; RESTRICTIONS: ; The polygons only cover the convex hull of the set of points. ; ; PROCEDURE: ; For interior points, the polygon is constructed by connecting ; the midpoints of the lines connecting the point with its Delaunay ; neighbors. Polygons are traversed in a counterclockwise direction. ; ; For exterior points, the set described by the midpoints of the ; connecting lines, plus the circumcenters of the two triangles ; that connect the point to the two adjacent exterior points. ; ; EXAMPLE: ; See the example procedure, VORONOI_SHOW, contained in this file. ; To illustrate Voronoi polygons, after compiling this file (voronoi): ; VORONOI_SHOW, Npoints (try anywhere from 3 to 1000, default=12) ; ; To draw the voroni polygons of each point of an irregular ; grid: ; x = randomu(seed, n) ;Random grid of N points ; y = randomu(seed, n) ; triangulate, x, y, tr, CONN=c ;Triangulate it ; rect = 0 ; for i=0, n-1 do begin ; voronoi, x, y, i, c, xp, yp, rect ;Get the ith polygon ; polyfill, xp, yp, color = (i mod 10) + 2 ;Draw it ; endfor ; ; MODIFICATION HISTORY: ; DMS, RSI. Dec, 1992. Original version. ; DMS, RSI Feb, 1995. Added bounding rectangle which simplified ; logic and better illustrated VPs for points ; on the convex hull. ;- COMMON VORONOI_COMMON, first ;Only print warning once. if n_params() lt 7 and n_elements(first) le 0 and !quiet eq 0 then begin Message, /INFO, 'New revision. For more efficient use, supply the Rect parameter' first = 1 endif p = c(c(i0):c(i0+1)-1) ;Verts of polygon np = n_elements(p) xp = fltarr(np, /NOZERO) yp = fltarr(np, /NOZERO) ext = i0 eq p(0) ;True if exterior point ; Each vertex is simply the circumcenter of a Delaunay triangle ; containing the point in question. for i=0, np-1 do begin ;Traverse adjacency list for point i0. m = p(i) j = p((i + 1) mod np) ;Successor cir_3pnt, x([m,j,i0]), y([m,j,i0]), r, x0, y0 xp[i] = x0 yp[i] = y0 endfor if ext eq 0 then return ;If interior point, we're all done.... ; *** Point is on the Convex Hull **** if n_elements(rect) ne 4 then begin ;Initialize bounding rect? i1 = i0 ;Follow boundary CCW xmin = min(x, max=xmax) ymin = min(y, max=ymax) xr = (xmax-xmin)*.05 ;Fudge factor of 5% yr = (ymax-ymin)*.05 rect = [xmin-xr, ymin-yr, xmax+xr, ymax+yr] ;Initial bound box repeat begin ;Get circumctr of each boundary triangle k = c(i1) m = c(k+1) j = c(k+2) cir_3pnt, x([m,j,i1]), y([m,j,i1]), r, x0, y0 rect[0] = rect[0] < x0 rect[2] = rect[2] > x0 rect[1] = rect[1] < y0 rect[3] = rect[3] > y0 ;Keep extremes i1 = m ;Next boundary point endrep until i1 eq i0 endif ; Now get intersections of perpendicular bisectors of the two edges ; on the convex hull, with vertex point i0, with the bounding rectangle. ; j = p(1) voronoi_get_intersect, rect, xp[1], yp[1], y[j]-y[i0], x[i0]-x[j], x0, y0,edge0 xp[0] = x0 yp[0] = y0 j = p(np - 1) voronoi_get_intersect, rect, xp[np-2], yp[np-2], y[i0]-y[j], x[j]-x[i0], $ x0, y0, edge1 xp[np-1] = x0 yp[np-1] = y0 if (edge0 < edge1) lt 0 then begin ;Either out of bounds? MESSAGE, /INFO, 'Bounding rectangle does not enclose Voronoi polygon' xp[0] = xp[1] ;Fudge polygon, its wrong anyway... yp[0] = yp[1] xp[np-1] = xp[np-2] yp[np-1] = yp[np-2] return endif while edge1 ne edge0 do begin ;Add corner(s) of bound rect if necess. edge1 = (edge1 + 1) mod 4 ;Go CCW xp = [xp, rect[([0,2,2,0])[edge1]]] yp = [yp, rect[([1,1,3,3])[edge1]]] endwhile return end